
EPICS
Input / Output Controller (IOC)
Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
June 1998
EPICS Release 3.13.0beta12
EPICS Release: R3.13.0.beta12 EPICS IOC Application Developer’s Guide 1

2 EPICS IOC Application Developer’s Guide

Table of Contents
 Table of Contents . 1

 Preface. 1
. Overview . 1
. Acknowledgments . 2

Chapter 1: EPICS Overview . 5
. What is EPICS? . 5
. Basic Attributes . 6
. Hardware - Software Platforms (Vendor Supplied). 6
. IOC Software Components . 7
. Channel Access . 9
. OPI Tools . 10
. EPICS Core Software. 11
. Getting Started . 12

Chapter 2: Database Locking, Scanning, And Processing 13
. Overview . 13
. Record Links . 13
. Database Links. 14
. Database Locking. 15
. Database Scanning . 15
. Record Processing . 16
. Guidelines for Creating Database Links . 16
. Guidelines for Synchronous Records. 19
. Guidelines for Asynchronous Records . 20
. Cached Puts . 21
. Channel Access Links . 22

Chapter 3: Database Definition . 25
. Overview . 25
. Definitions . 25
. Breakpoint Tables . 38
. Menu and Record Type Include File Generation. 39
. Utility Programs. 42

Chapter 4: IOC Initialization . 47
. Overview . 47
. iocInit . 48
. Changing iocCore fixed limits . 49
. TSconfigure . 49
. initHooks . 50
. Environment Variables . 51
EPICS Release: R3.13.0.beta12 EPICS IOC Application Developer’s Guide 1

 Table of Contents
. Initialize Logging . 51

. Get Resource Definitions . 52

Chapter 5: Access Security . 53
. Overview . 53
. Quick Start. 53
. User’s Guide . 54
. Design Summary . 59
. Access Security Application Programmer’s Interface . 61
. Database Access Security . 65
. Channel Access Security . 67
. Access Control: Implementation Overview . 68
. Structures. 70

Chapter 6: IOC Test Facilities. 71
. Overview . 71
. Database List, Get, Put . 71
. Breakpoints . 73
. Error Logging . 74
. Hardware Reports . 74
. Scan Reports . 75
. Time Server Report . 75
. Access Security Commands . 76
. Channel Access Reports . 77
. Interrupt Vectors . 78
. EPICS . 78
. Database System Test Routines . 78
. Record Link Routines . 79
. Old Database Access Testing . 80
. Routines to dump database information . 80

Chapter 7: IOC Error Logging . 83
. Overview . 83
. Error Message Routines . 84
. errlog Task. 85
. Status Codes . 86
. iocLog . 87

Chapter 8: Record Support . 89
. Overview . 89
. Overview of Record Processing . 89
. Record Support and Device Support Entry Tables . 90
. Example Record Support Module . 91
. Record Support Routines . 97
. Global Record Support Routines. 100

Chapter 9: Device Support. 103
. Overview . 103
. Example Synchronous Device Support Module . 104
. Example Asynchronous Device Support Module . 105
. Device Support Routines. 107

Chapter 10: Driver Support. 109
. Overview . 109
2 EPICS IOC Application Developer’s Guide

 Table of Contents
. Device Drivers . 109

Chapter 11: Static Database Access . 113
. Overview . 113
. Definitions . 113
. Allocating and Freeing DBBASE . 114
. DBENTRY Routines . 115
. Read and Write Database. 116
. Manipulating Record Types. 117
. Manipulating Field Descriptions . 118
. Manipulating Record Attributes. 118
. Manipulating Record Instances . 119
. Manipulating Menu Fields . 120
. Manipulating Link Fields. 121
. Manipulating MenuForm Fields . 122
. Find Breakpoint Table . 123
. Dump Routines . 123
. Examples . 124

Chapter 12: Runtime Database Access. 127
. Overview . 127
. Database Include Files . 127
. Runtime Database Access Overview . 130
. Database Access Routines . 132
. Runtime Link Modification . 139
. Channel Access Monitors . 139
. Lock Set Routines . 140
. Channel Access Database Links . 141

Chapter 13: Device Support Library . 145
. Overview . 145
. Registering VME Addresses . 145
. Interrupt Connect Routines . 146
. Macros and Routines for Normalized Analog Values . 146

Chapter 14: EPICS General Purpose Tasks . 149
. Overview . 149
. General Purpose Callback Tasks . 149
. Task Watchdog . 152

Chapter 15: Database Scanning . 155
. Overview . 155
. Scan Related Database Fields . 155
. Software Components That Interact With The Scanning System 156
. Implementation Overview . 159

Chapter 16: Database Structures . 163
. Overview . 163
. Include Files. 163
. Structures . 165
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 3

 Table of Contents
4 EPICS IOC Application Developer’s Guide

Preface
OC),
IOC

fits
d

 at

 that

an

me

lains

shell.

rror

are of

n

r

s

 Overview

This document describes the core software that resides in an Input/Output Controller (I
one of the major components of EPICS. It is intended for anyone developing EPICS
databases and/or new record/device/driver support.

The plan of the book is:

EPICS Overview An overview of EPICS is presented, showing how the IOC software
into EPICS. This is the only chapter that discusses OPI software an
Channel Access rather than just IOC related topics.

Database Locking, Scanning, and Processing
Overview of three closely related IOC concepts. These concepts are
the heart of what constitutes an EPICS IOC.

Database Definition This chapter gives a complete description of the format of the files
describe IOC databases. This is the format used by Database
Configuration Tools and is also the format used to load databases into
IOC.

IOC Initialization A great deal happens at IOC initialization. This chapter removes so
of the mystery about initialization.

Access Security Channel Access Security is implemented in IOCs. This chapter exp
how it is configured and also how it is implemented.

IOC Test Facilities Epics supplied test routines that can be executed via the vxWorks

IOC Error Logging IOC code can call routines that send messages to a system wide e
logger.

Record Support The concept of record support is discussed. This information is
necessary for anyone who wishes to provide customized record and
device support.

Device Support The concept of device support is discussed. Device support takes c
the hardware specific details of record support, i.e. it is the interface
between hardware and a record support module. Device support ca
directly access hardware or may interface to driver support.

Driver Support The concepts of driver support is discussed. Drivers, which are not
always needed, have no knowledge of records but just take care of
interacting with hardware. Guidelines are given about when driver
support, instead of just device support, should be provided.

Static Database Access
This is a library that works on Unix and vxWorks and on initialized o
uninitialized EPICS databases.

Runtime Database Access
The heart of the IOC software is the memory resident database. Thi
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 1

 Preface
Acknowledgments

s.

s not
s not

nd

io at
L/
hey
from

the
NL/
ndible
tware.
les

ges to
erson
is the

n of

ped
also

ed
uring
chapter describes the interface to this database.

Device Support Library
A set of routines are provided for device support modules that use
shared resources such as VME address space.

EPICS General Purpose Tasks
General purpose callback tasks and task watchdog.

Database Scanning Database scan tasks, i.e. the tasks that request records to proces

Database Structures A description of the internal database structures.

Other than the first chapter this document describes only core IOC software. Thus it doe
describe other EPICS tools which run in an IOC such as the sequencer. It also doe
describe Channel Access which is, of course, one of the major IOC components.

The reader of this manual should also have the following documents:

• EPICS Record Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

• EPICS IOC Applications: Building and Source Release Control ,Marty Kraimer a
Janet Anderson,
See ANL Web site for latest version.

• vxWorks Programmer’s Guide, Wind River Systems

• vxWorks Reference Manual, Wind River Systems

 Acknowledgments

The basic model of what an IOC should do and how to do it was developed by Bob Dales
LANL/GTA. The principle ideas for Channel Access were developed by Jeff Hill of LAN
GTA. Bob and Jeff also were the principle implementers of the original IOC software. T
developed this software (called GTACS) over a period of several years with feedback
LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with
major goal being to provide easily extendible record and device support. Marty Kraimer (A
APS) was primarily responsible for designing the data structures needed to support exte
record and device support and for making the changes needed to the IOC resident sof
Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modu
necessary to support the new facilities. Frank Lenkszus (ANL/APS) made extensive chan
the Database Configuration Tool (DCT) necessary to support the new facilities. Janet And
developed methods to systematically test various features of the IOC software and
principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the descriptio
fast database links and the database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also develo
the ASCII database instance format now used as the standard format. At that time he
createddbLoadRecords anddbLoadTemplate .

Thebuild utility method resulted in the generation of binary files of UNIX that were load
into IOCs. As new IOC architectures started being supported this caused problems. D
1995, after learning from an abandoned effort now referred to asEpicsRX , the build utilities
2 EPICS IOC Application Developer’s Guide

 Preface
Acknowledgments

d
the

eas
, i.e.

his
ffort
nd a

ord,
and binary file (calleddefault .dctsdr) were replaced by all ASCII files. The new metho
provides architecture independence and a more flexible environment for configuring
record/device/driver support. This principle implementer was Marty Kraimer with many id
contributed by John Winans and Jeff Hill. Bob Dalesio made sure that we did not go to far
1) make it difficult to upgrade existing applications and 2) lose performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. T
turned into a cooperative development effort between Bob and Marty Kraimer. The e
included new code for database to Channel Access links, a new library for lock sets, a
cleaner interface for accessing database links.

Many other people have been involved with EPICS development, including new rec
device, and driver support modules.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 3

 Preface
Acknowledgments
4 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
se to

us

sor,
ch as

Cs
cess,
client

.

IOC

out
 What is EPICS?

EPICS consists of a set of software components and tools that Application Developers u
create a control system. The basic components are:

• OPI: Operator Interface. This is a UNIX based workstation which can run vario
EPICS tools.

• IOC : Input/Output Controller. This is a VME/VXI based chassis containing a proces
various I/O modules and VME modules that provide access to other I/O buses su
GPIB.

• LAN : Local Area Network. This is the communication network which allows the IO
and OPIs to communicate. EPICS provides a software component, Channel Ac
which provides network transparent communication between a Channel Access
and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

The rest of this chapter gives a brief description of EPICS:

• Basic Attributes: A few basic attributes of EPICS.

• Platforms: The vendor supplied Hardware and Software platforms EPICS supports

• IOC Software: EPICS supplied IOC software components.

• Channel Access: EPICS software that supports network independent access to
databases.

• OPI Tools: EPICS supplied OPI based tools.

• EPICS Core: A list of the EPICS core software, i.e. the software components with
which EPICS will not work.

IOC

LAN

IOC

OPI OPI OPI.

.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 5

Chapter 1: EPICS Overview
Basic Attributes

his
s.

the
cales
IOCs.

over

n to
ges,
This

reen
0 IOC
annel

and
 Basic Attributes

The basic attributes of EPICS are:

• Tool Based: EPICS provides a number of tools for creating a control system. T
minimizes the need for custom coding and helps ensure uniform operator interface

• Distributed : An arbitrary number of IOCs and OPIs can be supported. As long as
network is not saturated, no single bottle neck is present. A distributed system s
nicely. If a single IOC becomes saturated, its functions can be spread over several
Rather than running all applications on a single host, the applications can be spread
many OPIs.

• Event Driven: The EPICS software components are all designed to be event drive
the maximum extent possible. For example, rather than having to poll IOCs for chan
a Channel Access client can request that it be notified when a change occurs.
design leads to efficient use of resources, as well as, quick response times.

• High Performance: A SPARC based workstation can handle several thousand sc
updates a second with each update resulting from a Channel Access event. A 6804
can process more than 6,000 records per second, including generation of Ch
Access events.

 Hardware - Software Platforms (Vendor Supplied)

OPI Hardware

• Unix based Workstations: Well supported platforms include SUNOS, SOLARIS,
HP-UX

• Other UNIX platforms have some support, including LINUX

• Limited support is provided for Windows NT and for VMS

Software

• UNIX

• X Windows

• Motif Toolkit

LAN Hardware

• Ethernet and FDDI

• ATM in the future

Software

• TCP/IP protocols via sockets

IOC Hardware

• VME/VXI bus and crates

• Motorola 68020, 68030, 68040, 68060

• Some support for other processors: Intel, Mips, PowerPC, Sparc, etc.
6 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
IOC Software Components

vice

s.

ines.

an
• Various VME modules (ADCs, DAC, Binary I/O, etc.)

• Allen Bradley Scanner (Most AB I/O modules)

• GPIB devices

• BITBUS devices

• CAMAC

• CANBUS

Software

• vxWorks operating system

• Real time kernel

• Extensive “Unix like” libraries

 IOC Software Components

An IOC contains the following EPICS supplied software components.

• IOC Database: The memory resident database plus associated data structures.

• Database Access: Database access routines. With the exception of record and de
support, all access to the database is via the database access routines.

• Scanners: The mechanism for deciding when records should be processed.

• Record Support: Each record type has an associated set of record support routine

• Device Support: Each record type can have one or more sets of device support rout

• Device Drivers: Device drivers access external devices. A driver may have
associated driver interrupt routine.

Ethernet

Channel
Access

Sequencer

Scanners

Monitors
Database
Access IOC Database

Driver or
Device

Interrupt
Routines

Record Support

Device Support

Device
Drivers

VME
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 7

Chapter 1: EPICS Overview
IOC Software Components

s a

sident
e set of

s and
y field
ust be

y. Most
s, do not

nel or
details.

es of

ime

are

ernal
the

sed or

s a

has its
ber and
each
f the
led by

record
ut its
yer
tion
evice
• Channel Access: The interface between the external world and the IOC. It provide
network independent interface to database access.

• Monitors : Database monitors are invoked when database field values change.

• Sequencer: A finite state machine.

Let’s briefly describe the major components of the IOC and how they interact.

IOC Database The heart of each IOC is a memory resident database together with various memory re
structures describing the contents of the database. EPICS supports a large and extensibl
record types, e.g.ai (Analog Input),ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record type
others are specific to particular record types. Every record has a record name and ever
has a field name. The first field of every database record holds the record name, which m
unique across all IOCs that are attached to the same TCP/IP subnet.

A number of data structures are provided so that the database can be accessed efficientl
software components, because they access the database via database access routine
need to be aware of these structures.

Database Access With the exception of record and device support, all access to the database is via the chan
database access routines. See Chapter 12, “Runtime Database Access” on page 127 for

Database Scanning Database scanning is the mechanism for deciding when to process a record. Five typ
scanning are possible: Periodic, Event, I/O Event, Passive and Scan Once.

• Periodic: A request can be made to process a record periodically. A number of t
intervals are supported.

• Event: Event scanning is based on the posting of an event by any IOC softw
component. The actual subroutine call is:

post_event(event_num)

• I/O Event: The I/O event scanning system processes records based on ext
interrupts. An IOC device driver interrupt routine must be available to accept
external interrupts.

• Passive: Passive records are processed as a result of linked records being proces
as a result of external changes such as Channel Access puts.

• Scan Once: In order to provide for caching puts, The scanning system provide
routinescanOnce which arranges for a record to be processed one time.

Record Support,
Device Support and
Device Drivers

Database access needs no record-type specific knowledge, because each record-type
associated record support module. Therefore, database access can support any num
type of records. Similarly, record support contains no device specific knowledge, giving
record type the ability to have any number of independent device support modules. I
method of accessing the piece of hardware is more complicated than what can be hand
device support, then a device driver can be developed.

Record typesnot associated with hardware do not have device support or device drivers.

The IOC software is designed so that the database access layer knows nothing about the
support layer other than how to call it. The record support layer in turn knows nothing abo
device support layer other than how to call it. Similarly the only thing a device support la
knows about its associated driver is how to call it. This design allows a particular installa
and even a particular IOC within an installation to choose a unique set of record types, d
types, and drivers. The remainder of the IOC system software is unaffected.
8 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
Channel Access

evice

y the
ctions

are,
ccess

aw

to
annel

ws the
se. A

ld use
terest

client/
blish

are
r of

blish

ess

send
ation
status
resis
Because an Application Developer can develop record support, device support, and d
drivers, these topics are discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called b
database scanners. Record processing consists of some combination of the following fun
(particular records types may not need all functions):

• Input : Read inputs. Inputs can be obtained, via device support routines, from hardw
from other database records via database links, or from other IOCs via Channel A
links.

• Conversion: Conversion of raw input to engineering units or engineering units to r
output values.

• Output : Write outputs. Output can be directed, via device support routines,
hardware, to other database records via database links, or to other IOCs via Ch
Access links.

• Raise Alarms: Check for and raise alarms.

• Monitor : Trigger monitors related to Channel Access callbacks.

• Link : Trigger processing of linked records.

Channel Access Channel Access is discussed in the next section.

Database Monitors Database monitors provide a callback mechanism for database value changes. This allo
caller to be notified when database values change without constantly polling the databa
mask can be set to specify value changes, alarm changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software shou
the database monitors. The monitor routines will not be described because they are of in
only to Channel Access.

 Channel Access

Channel Access provides network transparent access to IOC databases. It is based on a
server model. Each IOC provides a Channel Access server which is willing to esta
communication with an arbitrary number of clients. Channel Access client services
available on both OPIs and IOCs. A client can communicate with an arbitrary numbe
servers.

Client Services The basic Channel Access client services are:

• Search: Locate the IOCs containing selected process variables and esta
communication with each one.

• Get: Get value plus additional optional information for a selected set of proc
variables.

• Put: Change the values of selected process variables.

• Add Event: Add a change of state callback. This is a request to have the server
information only when the associated process variable changes state. Any combin
of the following state changes can be requested: change of value, change of alarm
and/or severity, and change of archival value. Many record types provide hyste
factors for value changes.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 9

Chapter 1: EPICS Overview
OPI Tools

onal

ds.
thout
hannel

earch
perator

s. This
cated in

nection
equest

Each

s.
s and/

r fails
) the

ashes,

ed on
ey are

ome

shes
bles,
In addition to requesting process variable values, any combination of the following additi
information may be requested:

• Status: Alarm status and severity.

• Units: Engineering units for this process variable.

• Precision: Precision with which to display floating point numbers.

• Time: Time when the record was last processed.

• Enumerated: A set of ASCII strings defining the meaning of enumerated values.

• Graphics: High and low limits for producing graphs.

• Control : High and low control limits.

• Alarm : The alarmHIHI , HIGH, LOW, andLOLO values for the process variable.

It should be noted that Channel Access doesnot provide access to database records as recor
This is a deliberate design decision. This allows new record types to be added wi
impacting any software that accesses the database via Channel Access, and it allows a C
Access client to communicate with multiple IOCs having differing sets of record types.

Search Server Channel Access provides an IOC resident server which waits for Channel Access s
messages. These are generated when a Channel Access client (for example when an O
Interface task starts) searches for the IOCs containing process variables the client use
server accepts all search messages, checks to see if any of the process variables are lo
this IOC, and, if any are found, replies to the sender with and “I have it” message.

Connection Request
Server

Once the process variables have been located, the Channel Access client issues con
requests for each IOC containing process variables the client uses. The connection r
server, in the IOC, accepts the request and establishes a connection to the client.
connection is managed by two separate tasks:ca_get and ca_put . The ca_get and
ca_put requests map todbGetField and dbPutField database access request
ca_add_event requests result in database monitors being established. Database acces
or record support routines trigger the monitors via a call todb_post_event .

Connection
Management

Each IOC provides a connection management service. When a Channel Access serve
(e.g. its IOC crashes) the client is notified and when a client fails (e.g. its task crashes
server is notified. When a client fails, the server breaks the connection. When a server cr
the client automatically re-establishes communication when the server restarts.

 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups bas
whether or not they use Channel Access. Channel Access tools are real time tools, i.e. th
used to monitor and control IOCs.

Channel Access
Tools

A large number of Channel Access tools have been developed. The following are s
representative examples.

• MEDM : Motif version of combined display manager and display editor.

• DM : Display Manager. Reads one or more display list files created by EDD, establi
communication with all necessary IOCs, establishes monitors on process varia
accepts operator control requests, and updates the display to reflect all changes.
10 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
EPICS Core Software

tion

nnel
User

)

d at

ing
cess

e for

ay
ach

s for

ord

S.

tware,

d be
uld
ever,
driver
• ALH : Alarm Handler. General purpose alarm handler driven by an alarm configura
file.

• AR: Archiver. General purpose tool to acquire and save data from IOCs.

• Sequencer: Runs in an IOC and emulates a finite state machine.

• BURT: Backup and Restore Tool. General purpose tool to save and restore Cha
Access channels. The tool can be run via Unix commands or via a Graphical
Interface.

• KM : Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs

• PROBE: Allows the user to monitor and/or change a single process variable specifie
run time.

• CAMATH : Channel Access interface for Mathematica.

• CAWINGZ : Channel Access interface for Wingz.

• IDL/PVWAVE Channel Access Interfaces exist for these products.

• TCL/TK Channel Access Interface for these products.

• CDEV - A library designed to provide a standard API to one or more underly
packages, typically control system interfaces. CDEV provides a Channel Ac
service.

Other OPI Tools • GDCT: Graphical Database Configuration Tool. Used to create a run time databas
an IOC.

• EDD: Display Editor. This tool is used to create a display list file for the Displ
Manager. A display list file contains a list of static, monitor, and control elements. E
monitor and control element has an associated process variable.

• SNC: State Notation Compiler. It generates a C program that represents the state
the IOC Sequencer tool.

• ASCII Tools - Tools are provided which generate C include files from menu and rec
type ASCII definition files.

• Source/Release: EPICS provides a Source/Release mechanism for managing EPIC

 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core sof
i.e. the components of EPICS without which EPICS would not function, are:

• Channel Access - Client and Server software

• IOC Database

• Scanners

• Monitors

• ASCII tools

• Source/Release

All other software components are optional. Of course, any application developer woul
crazy to ignore tools such as MEDM (or EDD/DM). Likewise an application developer wo
not start from scratch developing record and device support. Most OPI tools do not, how
have to be used. Likewise any given record support module, device support module, or
could be deleted from a particular IOC and EPICS will still function.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 11

Chapter 1: EPICS Overview
Getting Started

via
als/

lar
 Getting Started

The Document “EPICS IOC Applications: Building and Source Release Control” available
the WWW at www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManu
iocAppBuildSRcontrol.html gives instructions for building IOC applications. In particu
follow the instructions in the section “Quick Start”.
12 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And
Processing
iew
ne to

abase
ics of
the

ssing.

This
g, and

pes:

It is
cord

cord
 Overview

Before describing particular components of the IOC software, it is helpful to give an overv
of three closely related topics: Database locking, scanning, and processing. Locking is do
prevent two different tasks from simultaneously modifying related database records. Dat
scanning is the mechanism for deciding when records should be processed. The bas
record processing involves obtaining the current value of input fields and outputting
current value of output fields. As records become more complex so does the record proce

One powerful feature of the DATABASE is that records can contain links to other records.
feature also causes considerable complication. Thus, before discussing locking, scannin
processing, record links are described.

 Record Links

A database record may contain links to other records. Each link is one of the following ty

• INLINK
OUTLINK
INLINKs and OUTLINKs can be one of the following:

• constant link
Not discussed in this chapter

• database link
A link to another record in the same IOC.

• channel access link
A link to a record in another IOC. It is accessed via a special IOC client task.
also possible to force a link to be a channel access link even it references a re
in the same IOC.

• hardware link
Not discussed in this chapter

• FWDLINK
A forward link refers to a record that should be processed whenever the re
containing the forward link is processed. The following types are supported:

• constant link
Ignored.

• database link
A link to another record in the same IOC.

• channel access link
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 13

Chapter 2: Database Locking, Scanning, And Processing
Database Links

nk.
the

e.

essed
two

ximize

o an

e the
.

link
cord
the

alled
new

new
t new
urrent
record
he new
ct the
t the
A link to a record in another IOC or a link forced to be a channel access li
Unless the link references the PROC field it is ignored. If it does reference
PROC field a channel access put with a value of 1 is issued.

Links are defined in filelink.h .

NOTE: This chapter discusses mainly database links.

 Database Links

Database links are referenced by calling one of the following routines:

• dbGetLink : The value of the field referenced by the input link retrieved.

• dbPutLink : The value of the field referenced by the output link is changed.

• dbScanPassive: The record referred to by the forward link is processed if it is passiv

A forward link only makes sense when it refers to a passive record that the should be proc
when the record containing the link is processed. For input and output links, however,
other attributes can be specified by the application developer, process passive and ma
severity.

Process Passive Process passive (PP or NPP), is eitherTRUEor FALSE. It determines if the linked record
should be processed before getting a value from an input link or after writing a value t
output link. The linked record will be processed, via a call todbProcess , only if the record is
a passive record and process passive isTRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options forc
link to be handled like a Channel Access Link. See last section of this chapter for details

Maximize Severity Maximize severity (MS or NMS), is TRUE or FALSE. It determines if alarm severity is
propagated across links. For input links the alarm severity of the record referred to by the
is propagated to the record containing the link. For output links the alarm severity of the re
containing the link is propagated to the record referred to by the link. In either case, if
severity is changed, the alarm status is set toLINK_ALARM.

The method of determining if the alarm status and severity should be changed is c
”maximize severity”. In addition to its actual status and severity, each record also has a
status and severity. The new status and severity are initially 0, which meansNO_ALARM. Every
time a software component wants to modify the status and severity, it first checks the
severity and only makes a change if the severity it wants to set is greater than the curren
severity. If it does make a change, it changes the new status and new severity, not the c
status and severity. When database monitors are checked, which is normally done by a
processing routine, the current status and severity are set equal to the new values and t
values reset to zero. The end result is that the current alarm status and severity refle
highest severity outstanding alarm. If multiple alarms of the same severity are presen
status reflects the first one detected.
14 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Database Locking

sly by
the

ing
) a
er are
d

g a

s

ypes of

is

h

een

his
 Database Locking

The purpose of database locking is to prevent a record from being processed simultaneou
two different tasks. In addition, it prevents ”outside” tasks from changing any field while
record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
dbScanUnlock(precord);

The basic idea is to calldbScanLock before accessing database records and call
dbScanUnlock afterwords. Because of database links (Input, Output, and Forward
modification to one record can cause modification to other records. Records linked togeth
placed in the same lock set.dbScanLock locks the entire lock set not just the recor
requested.dbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifyin
record and unlock afterwards.

All records linked viaOUTLINKs andFWDLINKsare placed in the same lock set. Record
linked via INLINK s with process_passive or maximize_severity TRUE are also
forced to be in the same lock set.

 Database Scanning

Database scanning refers to requests that database records be processed. Four t
scanning are possible:

5. Periodic - Records are scanned at regular intervals.

6. I/O event - A record is scanned as the result of an I/O interrupt.

7. Event - A record is scanned as the result of any task issuing apost_event request.

8. Passive - A record is scanned as a result of a call todbScanPassive .
dbScanPassive will issue a record processing request if and only if the record
passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

• dbScanPassive: Only record processing routines,dbGetLink , dbPutLink , and
dbPutField call dbScanPassive . Record processing routines call it for eac
forward link in the record.

• dbPutField: This routine changes the specified field and then, if the field has b
declaredprocess_passive , callsdbScanPassive . Each field of each record type
has the attributeprocess_passive declaredTRUEor FALSE in the definition file.
This attribute is a global property, i.e. the application developer has no control of it. T
use ofprocess_passive is used only bydbPutField . If dbPutField finds the
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 15

Chapter 2: Database Locking, Scanning, And Processing
Record Processing

sed to
essing

ess

a
sed

call
a

t
ng.
reater

. In
they

d link
gets

.

sive
be
record already active (this can happen to asynchronous records) and it is suppo
cause it to process, it arranges for it to be processed again, when the current proc
completes.

• dbGetLink : If the link specifies process passive, this routine callsdbScanPassive .
Whether or notdbScanPassive is called, it then obtains the specified value.

• dbPutLink : This routine changes the specified field. Then, if the link specifies proc
passive, it callsdbScanPassive . dbPutLink is only called from record processing
routines. Note that this usage ofprocess_passive is under the control of the
application developer. IfdbPutLink finds the record already active because of
dbPutField directed to this record then it arranges for the record to be proces
again, when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.)
dbGetField to obtain database values.dbGetField just reads values without asking that
record be processed.

 Record Processing

A record is processed as a result of a call todbProcess . Each record support module mus
supply a routineprocess . This routine does most of the work related to record processi
Since the details of record processing are record type specific this topic is discussed in g
detail in Chapter "Record Support" for details.

 Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software
order to use links properly it is important that the Application Developer understand how
are processed. As an introduction consider the following example :

Assume that A, B, and C are all passive records. The notation states that A has a forwar
to B and B to C. C has an input link obtaining a value from A. Assume, for some reason, A
processed. The following sequence of events occurs:

9. A begins processing. While processing a request is made to process B.

10. B starts processing. While processing a request is made to process C.

11. C starts processing. One of the first steps is to get a value from A via the input link

12. At this point a question occurs. Note that the input link specifies process pas
(signified by thePP after InLink). But process passive states that A should

InLink PP

A FwdLink B FwdLink C
16 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

s no.

s

ple

ined

in a

ly or

usly

are

g
re
at
that
processed before the value is retrieved. Are we in an infinite loop? The answer i
Every record contains a fieldpact (processing active), which is setTRUEwhen record
processing begins and is not setFALSE until all processing completes. When C i
processed A still haspact TRUE and will not be processed again.

13. C obtains the value from A and completes its processing. Control returns to B.

14. B completes returning control to A

15. A completes processing.

This brief example demonstrates that database links needs more discussion.

Rules Relating to
Database Links

Processing Order The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For exam
the following records are processed in the orderFLNK1, FLNK2, FLNK3, FLNK4 .

2. If a record has multiple input links (calculation and select records) the input is obta
in the natural order. For example if the fields are namedINPA, INPB, ..., INPL , then the
links are read in the order A then B then C, etc. Thus if obtaining an input results
record being processed, the processing order is guaranteed.

3. All input and output links are processed before the forward link.

Lock Sets All records, except for the conditions listed in the next paragraph, linked together direct
indirectly are placed in the same lock set. WhendbScanLock is called the entire set, not just
the specified record, is locked. This prevents two different tasks from simultaneo
modifying records in the same lock set.

A linked record is not forced to be in the same lock set if all of the following conditions
true.

• The link is an INLINK (It is an input link)

• The link is NPP (It is no process passive)

• The link is NMS (It is no maximize severity)

• The number of elements is <-1 (The link references a scalar field)

PACT - processing
active

Each record contains a fieldpact . This field is setTRUEat the beginning of record processin
and is not setFALSE until the record is completely processed. In particular no links a
processed withpact FALSE . This prevents infinite processing loops. The example given
the beginning of this section gives an example. It will be seen in the next two sections
pact has other uses.

FLNK1 FLNK2

FLNK3 FLNK4

fanout
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 17

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

cation

ed the

C be

d no

tion

ific
Process Passive: Link
option

Input and output links have an option called process passive. For each such link the appli
developer can specify process passiveTRUE(PP) or process passiveFALSE (NPP). Consider
the following example

Assume that all records except fanout are passive. When the fanout record is process
following sequence of events occur:

1. Fanout starts processing and asks that B be processed.

2. B begins processing. It callsdbGetLink to obtain data from A.

3. Because the input link has process passive true, a request is made to process A.

4. A is processed, the data value fetched, and control is returned to B

5. B completes processing and control is returned to fanout. Fanout asks that
processed.

6. C begins processing. It callsdbGetLink to obtain data from A.

7. Because the input link has process passiveTRUE, a request is made to process A.

8. A is processed, the data value fetched, and control is returned to C.

9. C completes processing and returns to fanout

10. The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declare
process passive then A will only be processed once. Thus we should have .

Process Passive: Field
attribute

Each field of each database record type has an attribute calledprocess_passive . This
attribute is specified in the record definition file. It is not under the control of the applica
developer. This attribute is used only bydbPutField . It determines if a passive record will
be processed afterdbPutField changes a field in the record. Consult the record spec
information in the record reference manual for the setting of individual fields.

BFwdLink

FwdLink

fanout

InLink PP

InLink PP

A

C

BFwdLink

FwdLink

fanout

InLink NPP

InLink PP

A

C

18 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

the

alarm
m the
y of
larm
the

s the
set of
and in

hen

r via

pecify

cords

g
ut
ecord

ll be
t, and

f a

eing

n

wary,
ing
Maximize Severity:
Link option

Input and output links have an option called maximize severity. For each such link
application developer can specify maximize severityTRUE(MS) or maximize severityFALSE
(NMS).

When database input or output links are defined, the application developer can specify if
severities should be propagated across links. For input links the severity is propagated fro
record referred to by the link to the record containing the link. For output links the severit
the record containing the link is propagated to the record referenced by the link. The a
severity is transferred only if the new severity will be greater than the current severity. If
severity is propagated the alarm status is set equal toLINK_ALARM.

 Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thu
application developer never needs to consider the possibility of delays when he defines a
related records. The only consideration is deciding when records should be processed
what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding w
to process a record and for enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), via I/O event, o
Event.

2. For each periodic group and for each Event group the phase field can be used to s
processing order.

3. The application programmer has no control over the record processing order of re
in different groups.

4. The disable fields (SDIS, DISA, andDISV) can be used to disable records from bein
processed. By letting theSDIS field of an entire set of records refer to the same inp
record, the entire set can be enabled or disabled simultaneously. See the R
Reference Manual for details.

5. A record (periodic or other) can be the root of a set of passive records that will a
processed whenever the root record is processed. The set is formed by input, outpu
forward links.

6. Theprocess_passive option specified for each field of each record determines i
passive record is processed when adbPutField is directed to the field. The
application developer must be aware of the possibility of record processing b
triggered by external sources ifdbPutFields are directed to fields that have
process_passive TRUE .

7. The process_passive option for input and output links provides the applicatio
developer control over how a set of records are scanned.

8. General link structures can be defined. The application programmer should be
however, of defining arbitrary structures without carefully analyzing the process
order.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 19

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

input
routine
his is
onous

utine

g

utine

t
ny
oked

cess A.
 Guidelines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB
record. When the record is processed the GPIB request is started and the processing
returns. Processing, however, is not really complete until the GPIB request completes. T
handled via an asynchronous completion routine. Lets state a few attributes of asynchr
record processing.

During the initial processing for all asynchronous records the following is done:

9. pact is setTRUE

10. Data is obtained for all input links

11. Record processing is started

12. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

1. Record processing continues

1. Record specific alarm conditions are checked

2. Monitors are raised

3. Forward links are processed

4. pact is setFALSE.

A few attributes of the above rules are:

1. Asynchronous record processing does not delay the scanners.

1. Between the time record processing begins and the asynchronous completion ro
completes, no attempt will be made to again process the record. This is becausepact is
TRUE. The routinedbProcess checkspact and does not call the record processin
routine if it isTRUE. Note, however, that ifdbProcess finds the record active 10 times
in succession, it raises aSCAN_ALARM.

2. Forward and output links are triggered only when the asynchronous completion ro
completes record processing.

With these rules the following works just fine:

When dbProcess is called for record ASYN, processing will be started bu
dbScanPassive will not be called. Until the asynchronous completion routine executes a
additional attempts to process ASYN are ignored. When the asynchronous callback is inv
thedbScanPassive is performed.

Problems still remain. A few examples are:

Infinite Loop Infinite processing loops are possible.

Assume both A and B are asynchronous passive records and a request is made to pro
The following sequence of events occur.

1. A starts record processing and returns leavingpact TRUE .

dbScanPasive BASYN
20 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Cached Puts

uest
letes

uest
letes

loper

not
ed by
eam of

onous
ore the
f the
t allow
2. Sometime later the record completion for A occurs. During record completion a req
is made to process B. B starts processing and control returns to A which comp
leaving itspact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a req
is made to process A. A starts processing and control returns to B which comp
leaving itspact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application deve
to prevent such loops.

Obtain Old Data A dbGetLink to a passive asynchronous record can get old data.

If A is a passive asynchronous record then thedbGetLink request forcesdbProcess to be
called for A. dbProcess starts the processing and returns.dbGetLink then reads the
desired value which is still old because processing will only be completed at a later time.

Delays Consider the following:

The second ASYN record will not begin processing until the first completes, etc. This is
really a problem except that the application developer must be aware of delays caus
asynchronous records. Again, note that scanners are not delayed, only records downstr
asynchronous records.

Task Abort If the processing task aborts and the watch dog task cleans up before the asynchr
processing routine completes what happens? If the asynchronous routine completes bef
watch dog task runs everything is okay. If it doesn’t? This is a more general question o
consequences of having the watchdog timer restart a scan task. EPICS currently does no
scanners to be automatically restarted.

 Cached Puts

The rules followed bydbPutLink and dbPutField provide for ”cached” puts. This is
necessary because of asynchronous records. Two cases arise.

dbScanPasive
B

dbScanPasive
A

dbGetLink BA

dbScanPasiveASYN dbScanPasiveASYN . . .
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 21

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links

.e.

alue is
sed.
the

a

active
essed

ecord
nce,

s the

ss link.

us.
hen

r and

t and
ng to
a
a new

e a
t. As
h can
s into
blem.

than
s passive
e links.
ely.
The first results from adbPutField , which is a put coming from outside the database, i
Channel Access puts. If this is directed to a record that already haspact TRUE because the
record started processing but asynchronous completion has not yet occurred, then a v
written to the record but nothing will be done with the value until the record is again proces
In order to make this happendbPutField arranges to have the record reprocessed when
record finally completes processing.

The second case results fromdbPutLink finding a record already active because of
dbPutField directed to the record. In this casedbPutLink arranges to have the record
reprocessed when the record finally completes processing. Note that it could already be
because it appears twice in a chain of record processing. In this case it is not reproc
because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a r
while it is active, each new value is placed in the record but it will still only be processed o
i.e. last value wins.

 Channel Access Links

A channel access link is:

1. A record link that references a record in a different IOC.

2. A link that the application developer forces to be a channel access link.

A channel access client task (dbCa) handles all I/O for channel access links. It doe
following:

At IOC initialization dbCa issues channel access search requests for each channel acce

For each input link it establishes a channel access monitor. It usesca_field_type and
ca_element_count when it establishes the monitor. It also monitors the alarm stat
Whenever the monitor is invoked the new data is stored in a buffer belonging to dbCa. W
iocCore or the record support module asks for data the data is taken from the buffe
converted to the requested type.

For each output link, a buffer is allocated the first time iocCore/record support issues a pu
a channel access connection has been made. This buffer is allocated accordi
ca_field_type and ca_element_count . Each time iocCore/record support issues
put, the data is converted and placed in the buffer and a request is made to dbCa to issue
ca_put.

Even if a link references a record in the same IOC it can be useful to force it to act lik
channel access link. In particular the records will not be forced to be in the same lock se
an example consider a scan record that links to a set of unrelated records, each of whic
cause a lot of records to be processed. It is often NOT desirable to force all these record
the same lock set. Forcing the links to be handled as channel access links solves the pro

Because channel access links imply network activity, they are fundamentally different
database links. For this reason and because channel access does not understand proces
or maximize severity, the semantics of channel access links are not the same as databas
Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separat

INLINK The options for process passive are:
22 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links

is not
PP.

cord

cord

is not
PP.

d. In

is not
• PPor NPP - This link is made a channel access link because the referenced record
found in the local IOC. It is not possible to honor PP, thus the link always acts like N

• CA - Force the link to be a channel access link.

• CP - Force the link to be a channel access link and also request that the re
containing the link be processed whenever a monitor occurs.

• CPP - Force the link to be a channel access link and also request that the re
containing the link, if it is passive, be processed whenever a monitor occurs.

Maximize Severity is honored.

OUTLINK The options for process passive are:

• PPor NPP - This link is made a channel access link because the referenced record
found in the local IOC. It is not possible to honor PP thus the link always acts like N

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.

FWDLINK A channel access forward link is honored only if it references the PROC field of a recor
that case a ca_put with a value of 1 is written each time a forward link request is issued.

The options for process passive are:

• PPor NPP - This link is made a channel access link because the referenced record
found in the local IOC. It is not possible to honor PP thus it always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 23

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links
24 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
ing
s the

d

ach
 Overview

This chapter describes database definitions. The following definitions are described:

• Menu

• Record Type

• Device

• Driver

• Breakpoint Table

• Record Instance

Record Instances are fundamentally different from the other definitions. A file contain
record instances should never contain any of the other definitions and vise-versa. Thu
following convention is followed:

• Database Definition File - A file that contains any type of definition except recor
instances.

• Record Instance File - A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to e
other via include files.

 Definitions

Summary path "path"
addpath "path"
include "filename"
#comment
menu(name) {

include "filename"
choice(choice_name,"choice_value")
...

}

recordtype(record_type) {
include "filename"
field(field_name,field_type) {

asl(asl_level)
initial("init_value")
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 25

Chapter 3: Database Definition
Definitions

sed in
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)

}
...

}

device(record_type,link_type,dset_name,”choice_string”)
...

driver(drvet_name)
 ...

breaktable(name) {
raw_value, eng_value,
...

}

#The Following defines a Record Instance

record(record_type,record_name) {
include "filename"
field(field_name,"value")
...

}
#NOTE: GDCT uses grecord instead of record

General Rules

Keywords The following are keywords, i.e. they may not be used as values unless they are enclo
quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
breaktable
record
grecord
26 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions

d. The
o be

otes are

quote
ining

wever,a
s:

ber of
field:

is that

nce,
time a

d by
Unquoted Strings In the summary section, some values are shown as quoted strings and some unquote
actual rule is that any string consisting of only the following characters does not have t
quoted:

a-z A-Z 0-9 _ - : . [] < > ;

These are also the legal characters for process variable names. Thus in many cases qu
not needed.

Quoted Strings A quoted string can contain any ascii character except the quote character ". The
character itself can given by using \ as an escape. For example "\"" is a quoted string conta
the single character ".

Macro Substitution Macro substitutions are permitted inside quoted strings. The macro has the form:

$(name)
or
${name}

Escape Sequences Except for \" the database routines never translate standard C escape sequences, ho
routinedbTranslateEscape can be used to translate the standard C escape sequence

\a \b \f \n \r \t \v \\ \? \’ \" \000 \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal num
1 or 2 digits) A typical use is device support which expects escape sequences in the parm

dbTranslateEscape The routine is:

int dbTranslateEscape(char *s,const char *ct);
/*
 * copies ct to s while substituting escape sequences
 * returns the length of the resultant string
 * The result may contain 0 characters
*/

Define before
referencing

No item can be referenced until it is defined. For example arecordtype menu field can not
reference a menu unless that menu definition has already been defined. Another example
a record instance can not appear until the associated record type has been defined.

Multiple Definitions If a particular menu, recordtype, device, driver, or breakpoint table is defined more than o
then only the first instance is used. Record instance definitions are cumulative, i.e. each
new field value is encountered it replaces the previous value.

filename extension By convention:

• Record instances files have the extension ".db"

• Database definition files have the extension ".dbd ".

path addpath The path follows the standard Unix convention, i.e. it is a list of directory names separate
colons (Unix) or semicolons (winXX).
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 27

Chapter 3: Database Definition
Definitions

mpty
tory.

nd

the

ath as

cters

ate
Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is ; instead of :

Thepath command specifies the current path. Theaddpath appends directory names to the
current path. The path is used to locate the initial database file and included files. An e
dir at the beginning, middle, or end of a non-empty path string means the current direc
For example:

 nnn::mmm # Current directory is between nnn and mmm
 :nnn # Current directory is first
 nnn: # Current directory is last

Utilities which load database files (dbExpand , dbLoadDatabase , etc.) allow the user to
specify an initial path. Thepath andaddpath commands can be used to change or exte
the initial path.

The initial path is determined as follows:

If an initial path is specified, it is used. Else:
If the environment variableEPICS_DB_INCLUDE_PATH is defined, it is used. Else:
the default path is ".", i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing
specified file is used.

include Format:

include "filename"

An include statement can appear at any place shown in the summary. It uses the p
specified above.

comment The comment symbol is "#". Whenever the comment symbol appears, it and all chara
through the end of the line are ignored.

menu Format:

menu(name) {
choice(choice_name,"choice_value")
...

}

Where:

name - Name for menu. This is the unique name identifying the menu. If duplic
definitions are specified, only the first is used.
choice_name - The name placed in theenum generated bydbToMenuH or
dbToRecordtypeH
choice_value - The value associated with the choice.

Example:

menu(menuYesNo) {
choice(menuYesNoNO,"NO")
choice(menuYesNoYES,"YES")

}

28 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions

r

s.

se
base
t
ather

field?

.

the

ude
ns of
this
Record Type Format:

recordtype(record_type) {
field(field_name,field_type) {

asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu("name")

}
...

}

rules • asl - Access Security Level. The default isASL1. Access Security is discussed in a late
chapter. Only two values are permitted for this field (ASL0 andASL1). Fields which
operators normally change are assignedASL0. Other fields are assignedASL1. For
example, theVAL field of an analog output record is assignedASL0 and all other fields
ASL1. This is because only theVAL field should be modified during normal operation

• initial - Initial Value.

• promptgroup - Prompt group to which field belongs. This is for use by Databa
Configuration Tools. This is defined only for fields that can be given values by data
configuration tools. Fileguigroup .h contains all possible definitions. The differen
groups allow database configuration tools to present the user with groups of fields r
than all prompt fields. I don’t know of any tool that currently uses groups.

• prompt - A prompt string for database configuration tools. Optional ifpromptgroup
is not defined.

• special - If specified, then special processing is required for this field at run time.

• pp - Should a passive record be processed when Channel Access writes to this
The default isNO.

• interest - Only used by thedbpr shell command.

• base- For integer fields, a base ofDECIMALor HEXcan be specified. The default is
DECIMAL.

• size - Must be specified forDBF_STRING fields.

• extra - Must be specified forDBF_NOACCESS fields.

• menu - Must be specified forDBF_MENU fields. It is the name of the associated menu

definitions • record_type - The unique name of the record type. If duplicates are specified, only
first definition is used.

• field_name- The field name. Only alphanumeric characters are allowed. When incl
files are generated, the field name is converted to lower case. Previous versio
EPICS required that field name be a maximum of four characters. Although
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 29

Chapter 3: Database Definition
Definitions

ts if
restriction no longer exists, problems may arrise with some Channel Access clien
longer field names are chosen.

• field_type - This must be one of the following values:

• DBF_STRING

• DBF_CHAR

• DBF_UCHAR

• DBF_SHORT

• DBF_USHORT

• DBF_LONG

• DBF_ULONG

• DBF_FLOAT

• DBF_DOUBLE

• DBF_ENUM

• DBF_MENU

• DBF_DEVICE

• DBF_INLINK

• DBF_OUTLINK

• DBF_FWDLINK

• DBF_NOACCESS

• asl_level - This must be one of the following values:

• ASL0

• ASL1 (default value)

• init_value - A legal value for data type.

• prompt_value - A prompt value for database configuration tools.

• gui_group - This must be one of the following:

• GUI_COMMON

• GUI_ALARMS

• GUI_BITS1

• GUI_BITS2

• GUI_CALC

• GUI_CLOCK

• GUI_COMPRESS

• GUI_CONVERT

• GUI_DISPLAY

• GUI_HIST

• GUI_INPUTS

• GUI_LINKS

• GUI_MBB

• GUI_MOTOR

• GUI_OUTPUT

• GUI_PID

• GUI_PULSE

• GUI_SELECT

• GUI_SEQ1

• GUI_SEQ2

• GUI_SEQ3
30 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions

se
roup

that

utine
re is

the

d for

e

lled
alues
nly

e

this

.

• GUI_SUB

• GUI_TIMER

• GUI_WAVE

• GUI_SCAN
NOTE: GUI types were invented with the intention of allowing databa
configuration tools to prompt for groups of fields and when a user selects a g
the fields within the group. This feature has never been used and a result is
many record types have not assigned the correct GUI groups to each field.

• special_value must be one of the following:

• An integer value greater than 103. In this case, the record support special ro
is called whenever the field is modified by database access. This featu
present only for compatibility. New support modules should useSPC_MOD.

The following value disallows access to field.

• SPC_NOMOD- This means that field can not be modified at runtime except by
record/device support modules for the record type.

The following values are used for database common. They must NOT be use
record specific fields.

• SPC_SCAN - Scan related field.

• SPC_ALARMACK - Alarm acknowledgment field.

• SPC_AS - Access security field.

The following value is used if record support wants to trapdbNameToAddr
calls.

• SPC_DBADDR- This is set if the record supportcvt_dbaddr routine should be
called wheneverdbNameToAddr is called, i.e. when code outside record/devic
support want to access the field.

The following values all result in the record support special routine being ca
whenever database access modifies the field. The only reason for multiple v
is that originally it seemed like a good idea. New support modules should o
useSPC_MOD.

• SPC_MOD- Notify when modified, i.e. call the record support special routin
whenever the field is modified by database access.

• SPC_RESET - a reset field is being modified.

• SPC_LINCONV - A linear conversion field is being modified.

• SPC_CALC - A calc field is being modified.

• pp_value - Should a passive record be processed when Channel Access writes to
field? The allowed values are:

• NO (default)

• YES

• interest_level - An interest level for thedbpr command.

• base - For integer type fields, the default base. The legal values are:

• DECIMAL (Default)

• HEX

• size_value - The number of characters for aDBF_STRING field.

• extra_info - For DBF_NOACCESSfields, this is the C language definition for the field
The definition must end with the fieldname in lower case.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 31

Chapter 3: Database Definition
Definitions
Example The following is the definition of the binary input record.

recordtype(bi) {
include "dbCommon.dbd"
field(INP,DBF_INLINK) {

prompt("Input Specification")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(VAL,DBF_ENUM) {

prompt("Current Value")
asl(ASL0)
pp(TRUE)

}
field(ZSV,DBF_MENU) {

prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(OSV,DBF_MENU) {

prompt("One Error Severity")
promptgroup(GUI_BITS1)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(COSV,DBF_MENU) {

prompt("Change of State Svr")
promptgroup(GUI_BITS2)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(ZNAM,DBF_STRING) {

prompt("Zero Name")
promptgroup(GUI_CALC)
pp(TRUE)
interest(1)
size(20)

}
field(ONAM,DBF_STRING) {

prompt("One Name")
promptgroup(GUI_CLOCK)
pp(TRUE)
interest(1)
size(20)

}
field(RVAL,DBF_ULONG) {

prompt("Raw Value")
pp(TRUE)
32 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
}
field(ORAW,DBF_ULONG) {

prompt("prev Raw Value")
special(SPC_NOMOD)
interest(3)

}
field(MASK,DBF_ULONG) {

prompt("Hardware Mask")
special(SPC_NOMOD)
interest(1)

}
field(LALM,DBF_USHORT) {

prompt("Last Value Alarmed")
special(SPC_NOMOD)
interest(3)

}
field(MLST,DBF_USHORT) {

prompt("Last Value Monitored")
special(SPC_NOMOD)
interest(3)

}
field(SIOL,DBF_INLINK) {

prompt("Sim Input Specifctn")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SVAL,DBF_USHORT) {

prompt("Simulation Value")
}
field(SIML,DBF_INLINK) {

prompt("Sim Mode Location")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SIMM,DBF_MENU) {

prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}
field(SIMS,DBF_MENU) {

prompt("Sim mode Alarm Svrty")
promptgroup(GUI_INPUTS)
interest(2)
menu(menuAlarmSevr)

}
}

device This definition defines a single device support module.

device(record_type,link_type,dset_name,”choice_string”)
...
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 33

Chapter 3: Database Definition
Definitions

the

ing

be

of
definitions • record_type - Record type. The combination of record_type and
choice_string must be unique. If the same combination appears multiple times,
first definition is used.

• link_type - Link type. This must be one of the following:

• CONSTANT

• PV_LINK

• VME_IO

• CAMAC_IO

• AB_IO

• GPIB_IO

• BITBUS_IO

• INST_IO

• BBGPIB_IO

• RF_IO

• VXI_IO

• dset_name - The exact name of the device support entry table without the trail
"DSET". Duplicates are not allowed.

• choice_string Choice string for database configuration tools. Note that it must
enclosed in "". Note that for a given record type, eachchoice_string must be
unique.

Examples device(ai,CONSTANT,devAiSoft,"Soft Channel")
device(ai,VME_IO,devAiXy566Se,"XYCOM-566 SE Scanned")

driver Each driver definition contains the name of a driver entry table. It has the form:

driver(drvet_name)

Definitions • drvet_name- If duplicates are defined, only the first is used.

Examples driver(drvVxi)
driver(drvXy210)

breakpoint table This defines a breakpoint table.

breaktable(name) {
raw_value, eng_value,
...

}

Definitions • name - Name of breakpoint table. If duplicates are specified only the first is used.

• raw_value - The raw value, i.e. the actual ADC value associated with the beginning
the interval.

• eng_value - The engineering value associated with the beginning of the interval.

Example breaktable(typeJdegC) {
 0.000000 0.000000
34 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions

rs:

ach

lied,
that
 365.023224 67.000000
 1000.046448 178.000000
 3007.255859 524.000000
 3543.383789 613.000000
 4042.988281 692.000000
 4101.488281 701.000000
}

record instance Each record instance has the following definition:

record(record_type,record_name) {
field(field_name,"value")
...

}

definitions • record_type - The record type.

• record_name- The record name. This must be composed of the following characte
 a-z A-Z 0-9 _ - : [] < > ;
 NOTE: If macro substitutions are used the name must be quoted.
If duplicate definitions are given for the same record, then the last value given for e
field is the value assigned to the field.

• field_name- The field name

• value - Depends on field type.

• DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.

• DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG,
DBF_ULONG
A string that represents a valid integer. The standard C conventions are app
i.e. a leading 0 means the value is given in octal and a leading 0x means
value is given in hex.

• DBF_FLOAT, DBF_DOUBLE
The string must represent a valid floating point number.

• DBF_MENU
The string must be one of the valid choices for the associated menu.

• DBF_DEVICE
The string must be one of the valid device choice strings.

• DBF_INLINK , DBF_OUTLINK
The allowed value depends on the bus type of the associatedDTYPfield. These
are as follows:
NOTE: aDTYP of CONSTANT can be either a constant or aPV_LINK.

• CONSTANT
A constant valid for the field associated with the link.

• PV_LINK
A value of the form:

 record.field process maximize

field, process , andmaximize are optional.
The default value forfield is VAL.
process can have one of the following values:

• NPP - No Process Passive (Default)
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 35

Chapter 3: Database Definition
Definitions

l

ers

ax)
• PP - Process Passive
• CA - Force link to be a channel access link
• CP - CA and process on monitor
• CPP - CA and process on monitor if record is passive

NOTES:
CP and CPP are valid only for INLINKs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channe
access link it must reference the PROC field.

maximize can have one of the following values
• NMS - No Maximize Severity (Default)
• MS - Maximize severity

• VME_IO
#Ccard Ssignal @parm
where:
card - the card number of associated hardware module.
signal - signal on card
parm - An arbitrary character string of up to 31 characters.
 This field is optional and is device specific.

• CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction
@parm
branch , crate , station , subaddress , and function should be
obvious tocamac users.Subaddress andfunction are optional (0 if
not given).Parm is also optional and is device dependent (25 charact
max).

• AB_IO
#Llink Aadapter Ccard Ssignal @parm
link - Scanner., i.e. vme scanner number
adapter - Adapter. Allen Bradley also calls this rack
card - Card within Allen Bradley Chassis
signal - signal on card
parm - An optional character string that is device dependent(27 char m

• GPIB_IO
#Llink Aaddr @parm
link - gpib link, i.e. interface
addr - GPIB address
parm - device dependent character string (31 char max)

• BITBUS_IO
#Llink Nnode Pport Ssignal @parm
link - link, i.e. vme bitbus interface.
node - bitbus node
port - port on the node
signal - signal on port
parm - device specific character string(31 char max)

• INST_IO
@parm
parm - Device dependent character string(35 char max)

• BBGPIB_IO
#Llink Bbbaddr Ggpibaddr @parm
link - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpibaddr - gpib address
parm - optional device dependent character string(31 char max)
36 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions

at can
a field

s are
the
• RF_IO
#Rcryo Mmicro Ddataset Eelemen t

• VXI_IO
#Vframe Cslot Ssignal @parm (Dynamic addressing)
 or
#Vla Signal @parm (Static Addressing)
frame - VXI frame number
slot - Slot within VXI frame
la - Logical Address
signal - Signal Number
parm - device specific character string(25 char max)

• DBF_FWDLINK
This is either not defined or else is aPV_LINK. See above for definitions.

Examples record(ai,STS_AbAiMaS0) {
field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4to20MA")
field(INP,"#L0 A2 C0 S0 F0 @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")
field(LOPR,"4")

}
record(ao,STS_AbAoMaC1S0) {

field(DTYP,"AB-1771OFE")
field(OUT,"#L0 A2 C1 S0 F0 @")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmp")
field(DRVH,"20")
field(DRVL,"4")
field(HOPR,"20")
field(LOPR,"4")

}
record(bi,STS_AbDiA0C0S0) {

field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")
field(INP,"#L0 A0 C0 S0 F0 @")
field(ZNAM,"Off")
field(ONAM,"On")

}

record attribute Each record type can have a set of record attributes. Each attribute is a “psuedo” field th
be accessed via database and channel access. An attribute is given a name the acts like
name which has the same value for every instance of the record type. Two attribute
generated automatically for each record type: RTYP and VERS. The value for RTYP is
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 37

Chapter 3: Database Definition
Breakpoint Tables

d by
ange

f the

n and
bles. If

tually
s the
the

to the

it is
paced
ring,

ing to
record type name. The default value for VERS is "none specified", which can be change
record support. Record support can call the following routine to create new attributes or ch
existing attributes:

long dbPutAttribute(char *recordTypename,
 char *name,char*value)

The arguments are:

recordTypename - The name of recordtype.
name - The attribute name, i.e. the psuedo field name.
value - The value assigned to the attribute.

 Breakpoint Tables

The menumenuConvert is handled specially by theai and ao records (field isLINR).
These records allow raw data to be converted to/from engineering units via one o
following:

1. No Conversion.

2. Linear Conversion.

3. Breakpoint table.

Other record types can also use this feature. The first two choices specify no conversio
linear conversion. The remaining choices are assumed to be the names of breakpoint ta
a breakpoint table is chosen, the record support modules callscvtRawToEngBpt or
cvtEngToRawBpt . You can look at theai andao record support modules for details.

If a user wants to add additional breakpoint tables, then the following should be done:

• Copy themenuConvert .dbd file from EPICSbase /src/bpt

• Add definitions for new breakpoint tables to the end

• Make sure modifiedmenuConvert .dbd is loaded into the IOC instead of EPICS
version.

Please note that it is only necessary to load a breakpoint file if a record instance ac
chooses it. It should also be mentioned that the Allen Bradley IXE device support misuse
LINR field. If you use this module, it is very important that you do not change any of
EPICS supplied definitions inmenuConvert .dbd . Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded in
IOC beforeiocInit is called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes
desirable to create a breakpoint table from a table of raw values representing equally s
engineering units. A good example is the Thermocouple tables in the OMEGA Enginee
INC Temperature Measurement Handbook. A toolmakeBpt is provided to convert such data
to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values correspond
equally spaced engineering values is:

!comment line
<header line>
<data table>
38 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

input

a

orm

ny
menu
n

tions.

e

any
ame

e

The header line contains the following information:

• Name: ASCII string specifying breakpoint table name

• Low Value Eng: Engineering Units Value for first breakpoint table entry

• Low Value Raw: Raw value for first breakpoint table entry

• High Value Eng: Engineering Units: Highest Value desired

• High Value Raw: Raw Value for High Value Eng

• Error : Allowed error (Engineering Units)

• First Table: Engineering units corresponding to first data table entry

• Last Table: Engineering units corresponding to last data table entry

• Delta Table: Change in engineering units per data table entry

 An example definition is:

”TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing

makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the
filename with the extension of dbd.

Another way to create the breakpoint table is to include the following definition in
Makefile.Vx:

BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the f
bpt<name>.data and a breakpoint table bpt<name>.dbd.

 Menu and Record Type Include File Generation.

Introduction Given a file containing menus,dbToMenuH generates an include file that can be used by a
code which uses the associated menus. Given a file containing any combination of
definitions and record type definitions,dbToRecordtypeH generates an include file that ca
be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype defini
Users generating local record types are encouraged to do likewise.

• Each menu that is either for fields in database common (for examplemenuScan) or is
of global use (for examplemenuYesNo) is defined in a separate file. The name of th
file is the same as the menu name with an extension ofdbd . The name of the generated
include file is the menu name with an extension ofh. ThusmenuScan is defined in a
file menuScan.dbd and the generated include file is namedmenuScan.h

• Each record type definition is defined in a separate file. In addition, this file contains
menu definitions that are used only by that record type. The name of the file is the s
as the recordtype name followed byRecord .dbd . The name of the generated includ
file is the same name with an extension ofh. Thus aoRecord is defined in a file
aoRecord .dbd and the generated include file is namedaoRecord .h. Since
aoRecord has a private menu calledaoOIF , thedbd file and the generated include file
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 39

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

files

cute
is

of

of
have definitions for this menu. Thus for each record type, there are two source
(xxxRecord .dbd andxxxRecord .c) and one generated file (xxxRecord .h).

Before continuing, it should be mentioned that Application Developers don’t have to exe
dbToMenuHor dbToRecordtypeH . If a developer uses the proper naming conventions, it
only necessary to add definitions to theirMakefile .Vx. The definitions are:

MENUS += menuXXX.h (menus)
RECTYPES += xxRecord.h (recordtype & record specific menus)
USER_DBDFLAGS += -I dir
USER_DBDFLAGS += -S macsub

Consult the document on building IOC applications for details.

dbToMenuH This tool is executed as follows:

dbToMenuH -Idir -Smacsub menuXXX.dbd

It generates a file which has the same name as the input file but with an extensionh.
Multiple -I options can be specified for an include path and multiple-S options for macro
substitution.

 Example menuPriority .dbd , which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include file,menuPriority .h, generated bydbToMenuH contains:

#ifndef INCmenuPriorityH
#define INCmenuPriorityH
typedef enum {

menuPriorityLOW,
menuPriorityMEDIUM,
menuPriorityHIGH,

}menuPriority;
#endif /*INCmenuPriorityH*/

Any code that needs to use the priority menu values should use these definitions.

dbToRecordtypeH This tool is executed as follows:

dbTorecordtypeH -Idir -Smacsub xxxRecord.dbd

It generates a file which has the same name as the input file but with an extensionh.
Multiple -I options can be specified for an include path and multiple-S options for macro
substitution.

 Example aoRecord .dbd , which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full")
choice(aoOIF_Incremental,"Incremental")

}
recordtype(ao) {
40 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.
include "dbCommon.dbd"
field(VAL,DBF_DOUBLE) {

prompt("Desired Output")
asl(ASL0)
pp(TRUE)

}
field(OVAL,DBF_DOUBLE) {

prompt("Output Value")
}
... (Many more field definitions
}

}

The include file,aoRecord .h, generated bydbToRecordtypeH contains:

#include <vxWorks.h>
#include <semLib.h>
#include "ellLib.h"
#include "fast_lock.h"
#include "link.h"
#include "tsDefs.h"

#ifndef INCaoOIFH
#define INCaoOIFH
typedef enum {
 aoOIF_Full,
 aoOIF_Incremental,
}aoOIF;
#endif /*INCaoOIFH*/
#ifndef INCaoH
#define INCaoH
typedef struct aoRecord {
 char name[29]; /*Record Name*/
 ... Remaining fields in database common
 double val; /*Desired Output*/
 double oval; /*Output Value*/
 ... remaining record specific fields
} aoRecord;
#define aoRecordNAME 0
... defines for remaining fields in database common
#define aoRecordVAL 42
#define aoRecordOVAL 43
... defines for remaining record specific fields
#ifdef GEN_SIZE_OFFSET
int aoRecordSizeOffset(dbRecordType *pdbRecordType)
{
 aoRecord *prec = 0;
 pdbRecordType->papFldDes[0]->size=sizeof(prec->name);
 pdbRecordType->papFldDes[0]->offset=

(short)((char *)&prec->name - (char *)prec);
 ... code to compute size&offset for other fields in dbCommon
 pdbRecordType->papFldDes[42]->size=sizeof(prec->val);
 pdbRecordType->papFldDes[42]->offset=

(short)((char *)&prec->val - (char *)prec);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 41

Chapter 3: Database Definition
Utility Programs

uld use

clude

e of

nd

rd

e
or the
s:
 pdbRecordType->papFldDes[43]->size=sizeof(prec->oval);
 pdbRecordType->papFldDes[43]->offset=

(short)((char *)&prec->oval - (char *)prec);
 ... code to compute size&offset for remaining fields
 pdbRecordType->rec_size = sizeof(*prec);
 return(0);
}
#endif /*GEN_SIZE_OFFSET*/

The analog output record support module and all associated device support modules sho
this include file. No other code should use it.

 Discussion of
Generated File

Only the analog output record support module and associated device support should in
this record definition. Let’s discuss the various parts of the file.:

• Theenum generated from the menu definition should be used to reference the valu
the field associated with the menu.

• The typedef and structure defining the record are used by record support a
device support to access fields in an analog output record.

• A #define is present for each field within the record. This is useful for the reco
support routines that are passed a pointer to aDBADDRstructure. They can have code
like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

...
 break;
case aoRecordXXX:

...
break;

default:
...

}

The C source routineaoRecordSizeOffset is automatically called when a record type fil
is loaded into an IOC. Thus user code does not have to be aware of this routine except f
following convention: The associate record support module MUST include the statement

#define GEN_SIZE_OFFSET
#include "xxxRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once.

 Utility Programs

dbExpand dbExpand -Idir -Smacsub file1 file2 ...

Multiple -I options can be specified for an include path and multiple-S options for macro
substitution. Note that the environment variableEPICS_DB_INCLUDE_PATHcan also be
used in place of the-I options.
42 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Utility Programs

ines

ary at
NOTE: Host Utility Only

This command reads the input files and then writes, tostdout , a file containing ASCII
definitions for all information described by the input files. The difference is that comment l
do not appear and all include files are expanded.

This routine is extremely useful if an IOC is not using NFS for thedbLoadDatabase
commands. It takes more than 2 minutes to load thebase /rec /base .dbd file into an IOC if
NFS is not used. IfdbExpand creates a localbase .dbd file, it takes about 7 seconds to load
(25 MHZ 68040 IOC).

dbLoadDatabase dbLoadDatabase(char *db_file, char *path, char *substitutions)

NOTES:

• IOC Only

• Using a path on the ioc does not work very well.

• Both path and substitutions can be null, i.e. they do not have to be given.

This command loads a database file containing any of the definitions given in the summ
the beginning of this chapter.

dbfile must be a file containing onlyrecord instancesin standard ASCII format. Such files
should have an extension of “.db”.

As each line ofdbfile is read, the substitutions specified insubstitutions is
performed. The substitutions are specified as follows:

“var1=sub1,var2=sub3,...”

Variables are specified in the dbfile as $(variable_name). If the substitution string

"a=1,b=2,c=\"this is a test\""

were used, any variables$(a), $(b), $(c) would be substituted with the appropriate data.

EXAMPLE For example, lettest .db be:

record(ai,"$(pre)testrec1")
record(ai,"$(pre)testrec2")
record(stringout,"$(pre)testrec3") {

field(VAL,"$(STR)")
field(SCAN,"$(SCAN)")

}

Then issuing the command:

dbLoadDatabase("test.db",0,"pre=TEST,STR=test,SCAN=Passive")

gives the same results as loading:

record(ai,"TESTtestrec1")
record(ai,"TESTtestrec2")
record(stringout,"TESTtestrec3") {

field(VAL,"test")
field(SCAN,"Passive")

}

EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 43

Chapter 3: Database Definition
Utility Programs

t

ing

For

file
ns in

s sets

ame
dbLoadRecords dbLoadRecords(char* dbfile, char* substitutions)

NOTES:

• IOC Only.

• dbfile must contain only record instances.

• dbLoadRecords is no longer needed.It will probably go away in the future. A
the present time dbLoadRecords loads faster than dbLoadDatabase.

dbLoadTemplate dbLoadTemplate(char* template_def)

dbLoadTemplate reads a template definition file. This file contains rules about load
database instance files, which contain$(xxx) macros, and performing substitutions.

template_def contains the rules for performing substitutions on the instance files.
convenience two formats are provided. The format is:

file name.db {
put Version-1 or Version-2 here

}

Version-1

{ set1var1=sub1, set1var2=sub2,...... }
{ set2var1=sub1, set2var2=sub2,...... }
{ set3var1=sub1, set3var2=sub2,...... }

- or -

Version-2

pattern{ var1,var2,var3,....... }
{ sub1_for_set1, sub2_for_set1, sub3_for_set1, ... }
{ sub1_for_set2, sub2_for_set2, sub3_for_set2, ... }
{ sub1_for_set3, sub2_for_set3, sub3_for_set3, ... }

The first line (filename.db) specifies the record instance input file.

Each set of definitions enclosed in {} is variable substitution for the input file. The input
has each set applied to it to produce one composite file with all the completed substitutio
it. Version 1 should be obvious. In version 2, the variables are listed in the “pattern {}” line,
which must precede the braced substitution lines. The braced substitution lines contain
which match up with thepattern {} line.

EXAMPLE Two simple template file examples are shown below. The examples specify the s
substitutions to perform:this =sub1 and that =sub2 for a first set, andthis =sub3 and
that =sub4 for a second set.

file test.db {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }

}

file test.db {
pattern{this,that}
{sub1,sub2}
{sub3,sub4 }

Assume thattest .db is:
44 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Utility Programs

tance

and
record(ai,"$(this)record") {
field(DESC,"this = $(this)")

}
record(ai,"$(that)record") {

field(DESC,"this = $(that)")
}

UsingdbLoadTemplate with either input is the same as defining the records:

record(ai,"sub1record") {
field(DESC,"this = sub1")

}
record(ai,"sub2record") {

field(DESC,"this = sub2")
}

record(ai,"sub3record") {
field(DESC,"this = sub3")

}
record(ai,"sub4record") {

field(DESC,"this = sub4")
}

dbReadTest dbReadTest -Idir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database ins
files. It just reads all the specified files

Multiple -I, and-S options can be specified. An arbitrary number of database definition
database instance files can be specified.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 45

Chapter 3: Database Definition
Utility Programs
46 EPICS IOC Application Developer’s Guide

Chapter 4: IOC Initialization
rks

ibes
efore

for

cord,
 Overview

After vxWorks is loaded at IOC boot time, the following commands, normally in a vxWo
startup command file, are issued to load and initialize the control system software:

For many board support packages the following must be added
#cd <full path to target bin directory>
< cdCommands
cd appbin
ld < iocCore
ld < <appname>Lib

 cd startup
dbLoadDatabase(”<file>.dbd”)

 dbLoadDatabase(”<file>.db")
dbLoadRecords("<file>.db")

and/or
dbLoadTemplates("<file>.db,"<template_def>")

. . .
iocInit

NOTE: The "IOC Applications: Building and Source/Release Control" manual descr
procedures and tools for building IOC applications. This manual should be consulted b
creating new startup file.

cdCommands defines vxWorks global variables that allow vxWorks cd commands
convient locations. For example in one of my test areas the followingcdCommands file
appears:

startup = "/home/phoebus6/MRK/epics/test/iocBoot/iocaccess"
appbin = "/home/phoebus6/MRK/epics/test//bin/mv167"
share = "/home/phoebus/MRK/iocsys/share"

NOTE: This file is automatically generated via make rules.

The firstld command loads the core EPICS software. The second command loads the re
device, and driver support plus any other application specific modules.

One or moredbLoadDatabase commands load database definition files.

One or moredbLoadDatabase , dbLoadRecords , and dbLoadTemplate commands
load record instance definitions.

iocInit initializes the various epics components.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 47

Chapter 4: IOC Initialization
iocInit

runs
ssage.

being

s.

er.

an

C,
been
er,

s:

an
 iocInit

iocInit performs the following functions:

coreRelease Prints a messages showing which version of iocCore is being loaded.

getResources See below. This is obsolete feature.

iocLogInit Initialize system wide logging facility.

taskwdInit start the task watchdog task. This task accepts requests to watch other tasks. It
periodically and checks to see if any of the tasks is suspended. If so it issues an error me
It can also optionally invoke a callback routine

callbackInit Start the general purpose callback tasks. Three tasks are started with the only difference
scheduling priority.

dbCaLinkInit CallsdbCaLinkInit . The initializes the task that handles database channel access link

initDrvSup InitDrvSup locates each device driver entry table and calls the init routine of each driv

initRecSup InitRecSup locates each record support entry table and calls the init routine.

initDevSup InitDevSup locates each device support entry table and calls the init routine with
argument specifying that this is the initial call.

ts_init Ts_init initializes the timing system. If a hardware timing board resides in the IO
hardware timing support is used, otherwise software timing is used. If the IOC has
declared to be a master timer, the initial time is obtained from the UNIX master tim
otherwise the initial time is obtained from the IOC master timer.

initDatabase InitDatabase makes three passes over the database performing the following function

• Pass 1: Initializes following fields:rset , dset , mlis . Calls record support
init_record (First pass)

• Pass 2: Convert eachPV_LINK to DB_LINK or CA_LINK

• Pass 3: Calls record supportinit_record (second pass)

After the database is initializeddbLockInitRecords is called. It creates the lock sets.

finishDevSup InitDevSup locates each device support entry table and calls the init routine with
argument specifying that this is the finish call.

scanInit The periodic, event, and io event scanners are initialized and started.

interruptAccept A global variable ”interruptAccept ” is set TRUE. Until this time no request should be
made to process records and all interrupts should be ignored.
48 EPICS IOC Application Developer’s Guide

Chapter 4: IOC Initialization
Changing iocCore fixed limits

imits.

d can
a ring
ffer

e. The
It
nd
le size

for the
ally

bytes.

can be
g can
pplied.

ous
ault

nt
ed.
initialProcess dbProcess is called for all records that havePINI TRUE .

rsrv_init The Channel Access server is started

 Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed l
The commands should be given before any dbLoad commands are given.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errlogInit(buffersize)

callbackSet
QueueSize

Requests for the general putpose callback tasks are placed in a ring buffer. This comman
be used to set the size for the ring buffers. The default is 2000. A message is issued when
buffer overflows. It should rarely be necessary to override this default. Normally the ring bu
overflow messages appear when a callback task fails.

dbPvdTableSize Record instance names are stored in a process variable directory, which is a hash tabl
default number of hash entries is 512.dbPvdTableSize can be called to change the size.
must be called before anydbLoad commands and must be a power of 2 between 256 a
65536. If an IOC contains very large databases (several thousand) then a larger hash tab
speeds up searches for records.

scanOnceSet
QueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size
ring buffer. The default is 1000. t should rarely be necessary to override this default. Norm
the ring buffer overflow messages appear when the scanOnce task fails.

errlogInit Thus overrides the default buffer size for the errlog message queue. The default is1280

 TSconfigure

EPICS supports several methods for an IOC to obtain time so that accurate time stamps
generated. The default is to obtain NTP time stamps from another computer. The followin
be used to change the defaults. If ant argument is given the value 0 then the default is a

TSConfigure(master,sync_rate,clock_rate,master_port,slave_port)

• master: 1=master timing IOC, 0=slave timing, default is slave.

• sync_rate: The clock sync rate in seconds. This rate tells how often the synchron
time stamp support software will confirm that an IOC clock is synchronized. The def
is 10 seconds.

• clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the eve
system. The value will be set to the IOC’s internal clock rate when soft timing is us

• master_port: UDP port for master. The default is 18233

• slave_port: UDP port for slave.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 49

Chapter 4: IOC Initialization
initHooks

re,

the
ix.

s to
re

ring
ing

alled
• time_out: UDP information request time out in milliseconds, if zero is entered he
the default will be used which is 250ms.

• type: 0=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support", by Jim Kowalkowski for details. Note that
default is to be a slave. If no master is found the slave will obtain a starting time from Un

 initHooks

NOTE: starting with release 3.13.0beta12 initHooks was changed drastically (thank
Benjamin Franksen at BESY). Old initHooks.c functions will still work but users a
encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states du
ioc initialization. The states are defined in initHooks.h, which contains the follow
definitions:

typedef enum {
 initHookAtBeginning,
 initHookAfterGetResources,
 initHookAfterLogInit,
 initHookAfterCallbackInit,
 initHookAfterCaLinkInit,
 initHookAfterInitDrvSup,
 initHookAfterInitRecSup,
 initHookAfterInitDevSup,
 initHookAfterTS_init,
 initHookAfterInitDatabase,
 initHookAfterFinishDevSup,
 initHookAfterScanInit,
 initHookAfterInterruptAccept,
 initHookAfterInitialProcess,
 initHookAtEnd
}initHookState;

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);

Any new functions that are registered before iocInit reaches the desired state will be c
when iocInit reaches that state. The following is skeleton code to use the facility:

#include <vxWorks.h>
#include <stdlib.h>
#include <stddef.h>
#include <initHooks.h>

static initHookFunction myHookFunction;

int myHookInit(void)
{
 return(initHookRegister(myHookFunction));
}

50 EPICS IOC Application Developer’s Guide

Chapter 4: IOC Initialization
Environment Variables

Load

on
static void myHookFunction(initHookState state)
{
 switch(state) {
 case initHookAfterInitRecSup:
 ...
 break;
 case initHookAfterInterruptAccept:
 ...
 break;
 default:
 break;
 }
}

Assuming the code is in file myHook.c, the st.cmd file should contain (before iocInit).

 ld < bin/myHook.o
 myHookInit

An arbitrary number of functions can be registered.

 Environment Variables

The following environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_TS_MIN_WEST
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

These variables can be overridden via the vxWorks putenv function. For example:

 putenv("EPICS_TS_MIN_WEST=300")

Any putenv commands should be issued after iocCore is loaded and before any db
commands.

 Initialize Logging

Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliizati
just realise that the following can be used if you want to use a private host log file.

putenv("EPICS_IOC_LOG_PORT=7004")
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 51

Chapter 4: IOC Initialization
Get Resource Definitions

be

es of

riable
putenv("EPICS_IOC_LOG_INET=164.54.8.12")

These command must be given immediately after iocCore is loaded.

If you want to disable logging to the system wide log file just give the command.

iocLogDisable = 1

This must be given after iocCore is loaded and before any dbLoad commands.

 Get Resource Definitions

NOTE: This facility is supported for compatibility with previous releases. It should NOT
used for new applications.

iocInit accepts a string argument which is the name of a resource file which can set valu
IOC global variables. The resource file contains lines with the following format:

global_name type value

global_name is the name of the variable to be changed.

type must be one of the following:

DBF_STRING
DBF_SHORT
DBF_LONG
DBF_FLOAT
DBF_DOUBLE

value is the value to be assigned to the global variable.

Please note that type MUST be set so that it matches the actual type of the global va
because there is no way forGetResources to know the actual type.
52 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
ases. It

ments

null

with
e

ted..
 Overview

This chapter describes access security. i.e. the system that limits access to IOC datab
consists of the following sections:

1. Overview - This section

2. Quick start - A summary of the steps necessary to start access security.

3. User’s Guide - This explains what access security is and how to use it.

4. Design Summary - Functional Requirements and Design Overview.

5. Application Programmer’s Interface

6. Database Access Security - Access Security features for EPICS IOC databases.

7. Channel Access Security - Access Security features in Channel Access

8. Implementation Overview

The requirements for access security were generated at ANL/APS in 1992. The require
document is:

EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.

This document is available via the EPICS WWW documentation

 Quick Start

In order to “turn on” access security for a particular IOC the following must be done:

• Create the access security file.

• IOC databases may have to be modified

• Record instances may have to have values assigned to field ASG. If ASG is
the record is in group DEFAULT.

• Access security files can be reloaded after iocInit via a subroutine record
asSubInit and asSubProcess as the associated subroutines. Writing th
value 1 to this record will cause a reload.

• The vxWorks startup file must contain the following command before iocInit.
asSetFilename(“accessSecurityFile”)

The following is an optional command.
asSetSubstitutions(“var1=sub1,var2=sub2,...”))

The following rules decide if access security is turned on for an IOC:

• If asSetFilename is not executed before iocInit, access security will NEVER be star
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 53

Chapter 5: Access Security
User’s Guide

hen

error

ccess

nel
otely

the
cess
ord
ord

tion

. It is

ust be

, host
base by
• If asSetFile is given and any error occurs while first initializing access security, t
ALL access to that ioc is denied.

• If after successfully starting access security, an attempt is made to restart and an
occurs then the previous access security configuration is maintained.

 User’s Guide

Features Access security protects IOC databases from unauthorized Channel Access Clients. A
security is based on the following:

• Who: Userid of the channel access client.

• Where: Hostid where the user is logged on. This is the host on which the chan
access client exists. Thus no attempt is made to see if a user is local or is rem
logged on to the host.

• What: Individual fields of records are protected. Each record has a field containing
Access Security Group (ASG) to which the record belongs. Each field has an ac
security level, which must be 0 or 1.The security level is defined in the ascii rec
definition file. Thus the access security level for a field is the same for all rec
instances of a record type.

• When: Access rules can contain input links and calculations similar to the calcula
record.

Limitations An IOC database can be accessed only via Channel Access or via the vxWorks shell
assumed that access to the local IOC console is protected via physical security andtelnet /
rlogin access protected via normal Unix and physical security.

No attempt has been made to protect against the sophisticated saboteur. Unix security m
used to limit access to the subnet on which the iocs reside.

Definitions This document uses the following terms:

• ASL: Access Security Level (Called access level in Req Doc)

• ASG: Access Security Group (Called PV Group in Req Doc)

• UAG: User Access Group

• HAG : Host Access Group

Access Security
Configuration File

This section describes the format of a file containing definitions of the user access groups
access groups, and access security groups. An IOC creates an access configuration data
reading an access configuration file (the extension .acf is recommended). Lets first give a
simple example and then a complete description of the syntax.

Simple Example UAG(uag) {user1,user2}
HAG(hag) {host1,host2}
ASG(DEFAULT) {

RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)
54 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
User’s Guide

ame
ld of

host
rget

r is

cess
}
}

These rules provide read access to anyone located anywhere and write access touser1 and
user2 if they are located athost1 or host2 .

Syntax Definition In the following description:

[] Lists optional elements
| Separator for alternatives
... Means that an arbitrary number of definitions may be given.

Any line beginning with # is a comment

UAG(<name>) [{ <user> [, <user> ...] }]
...
HAG(<name>) [{ <host> [, <host> ...] }]
...
ASG(<name>) [{

[INP<index>(<pvname>)
...]
RULE(<level>,NONE | READ | WRITE) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC(”<calculation>”)

}
...

}]
...

Discussion • UAG: User Access Group. This is a list of userids. The list may be empty. The s
userid can appear in multiple UAGs. For iocs the userid is taken from the user fie
the boot parameters.

• HAG : Host Access Group. This is a list of host names. It may be empty. The same
name can appear in multiple HAGs. For iocs the host name is taken from the ta
name of the boot parameters.

• ASG: An access security group. The group ”DEFAULT” is a special case. If a member
specifies a null group or a group which has no ASG definition then the membe
assigned to the group ”DEFAULT”.

• INP<index> Index must have one of the values “A” to “ L”. These are just like
the INP fields of a calculation record. It is necessary to defineINP fields if a
CALC field is defined in anyRULE for the ASG.

• RULE This defines access permissions. <level > must be 0 or 1. Permission
for a level 1 field implies permission for level 0 fields. The permissions areNONE,
READ, andWRITE. WRITEpermission impliesREADpermission. The standard
EPICS record types have all fields set to level 1 except forVAL, CMD(command),
andRES (reset).

• UAG specifies a list of user access groups that can have the ac
privilege. If UAG is not defined then all users are allowed.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 55

Chapter 5: Access Security
User’s Guide

e. If

e

e

e
cess

is

is

of
he
1.

cess

s by

r self
the

and

el

way is
ng the
• HAG specifies a list of host access groups that have the access privileg
HAG is not defined then all hosts are allowed.

• CALC is just like theCALCfield of a calculation record except that th
result must evaluate to TRUE orFALSE. If the calculation results in (0,1)
meaning (FALSE,TRUE) then the rule (doesn’t apply, does apply) . Th
actual test is .99 <result < 1.01.

Each IOC record contains a fieldASG, which specifies the name of the ASG to which th
record belongs. If this field is null or specifies a group which is not defined in the ac
security file then the record is placed in group ”DEFAULT”.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:
a. The field’s level must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG

not defined all users are accepted.
c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG

not defined all hosts are accepted.
d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any

the INP fields associated with this calculation are in INVALID alarm severity t
calculation is considered false. The actual test for TRUE is .99 < result < 1.0

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and ac
permission.

ascheck - Check
Syntax of Access
Configuration File

After creating or modifying an access configuration file it can be checked for syntax error
issuing the command:

ascheck -S “xxx=yyy,...” < "filename"

This is a Unix command. It displays errors onstdout . If no errors are detected it prints
nothing. Only syntax errors not logic errors are detected. Thus it is still possible to get you
in trouble. The flag-S means a set of macro substitutions may appear. This is just like
macro substitutions for dbLoadDatabase.

IOC Access Security
Initialization

In order to have access security turned on during IOC initialization the following comm
must appear in the startup file beforeiocInit is called:

asSetFilename("<access security file>")

If this command does not appear then access security will not be started byiocInit . If an
error occurs when iocInit callsasInit than all access to the ioc is disabled, i.e. no chann
access client will be able to access the ioc.

Access security also supports macro substitution just likedbLoadDatabase . The following
command specifies the desired substitutions:

asSetSubstitutions(“var1=sub1,var2=sub2,...”)

This command must be issued beforeiocInit .

After an IOC is initialized the access security database can be changed. The preferred
via the subroutine record described in the next section. It can also be changed by issui
following command to the vxWorks shell:

asInit
56 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
User’s Guide

s

ot be

e
ned

with

load a

l

new
the

cess

s to

have
hing

laced
It is also possible to reissueasSetFilename and/or asSetSubstitutions before
asInit . If any error occurs duringasInit the old access security configuration i
maintained. It isNOT permissable to callasInit beforeiocInit is called.

Restarting access security after ioc initialization is an expensive operation and should n
used as a regular procedure.

Database
Configuration

Access Security
Group

Each database record has a fieldASG which holds a character string. Any databas
configuration tool can be used to give a value to this field. If the ASG of a record is not defi
or is not equal to a ASG in the configuration file then the record is placed inDEFAULT.

Subroutine Record
Support

Two subroutines, which can be attached to a subroutine record, are available (provided
iocCore):

asSubInit
asSubProcess

If a record is created that attaches to these routines, it can be used to force the IOC to
new access configuration database. To change the access configuration:

1. Modify the file specified by the last call toasSetFilename so that it contains the new
configuration desired.

2. Write a 1 to thesubroutine recordVAL field. Note that this can be done via channe
access.

The following action is taken:

1. When the value is found to be 1,asInit is called and the value set back to 0.

2. The record is treated as an asynchronous record. Completion occurs when the
access configuration has been initialized or a time-out occurs. If initialization fails
record is placed into alarm with a severity determined byBRSV.

Record Type
Description

Each field of each record type has an associated access security level ofASL0 or ASL1. See the
chapter “Database Definition” for details.

Example: Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write ac
to most level 0 fields only if the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write acces
most level 0 fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can
write access to all fields but must have some way of not changing somet
inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are p
under tighter control. These will follow rules 1 and 4 but not 2 or 3.

6. IOC channel access clients always have level 1 write privilege.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 57

Chapter 5: Access Security
User’s Guide

uration
l,
Most Linac IOC records will not have theASGfield defined and will thus be placed in ASG
“DEFAULT". The following records will have anASG defined:

• LI:OPSTATE and any other records that need tighter control haveASG="critical ".
One such record could be a subroutine record used to cause a new access config
file to be loaded.LI_OPSTATE has the value (0,1) if the Linac is (not operationa
operational).

• LI:lev1permit hasASG="permit ". In order for theopSup , linacSup , or an
appDev to have write privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,op2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc)
{ioclic1,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)
INPB(LI:lev1permit)
RULE(0,WRITE) {

UAG(op)
HAG(icr,cr)
CALC(”A=1”)

}
RULE(0,WRITE) {

UAG(op,linac,appdev)
HAG(icr,cr)
CALC(”A=0”)

}
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(permit) {

RULE(0,WRITE) {
 UAG(opSup,linacSup,appDev)

 }
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(critical) {

INPB(LI:lev1permit)
58 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Design Summary

ecifies:

nce.
derate
ange
ging a
access
r, by a

edded

annel
uld not
RULE(1,WRITE) {
UAG(opSup,linacSup,appdev)
CALC("B=1")

}
 RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}
}

 Design Summary

Summary of
Functional
Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assigned to a unique access security group.

3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule sp
a. Access security level
b. READ or READ/WRITE access.
c. An optional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

Additional
Requirements

Performance Although the functional requirements doesn’t mention it, a fundamental goal is performa
The design provides almost no overhead during normal database access and mo
overhead for the following: channel access client/server connection, ioc initialization, a ch
in value of a process variable referenced by an access calculation, and dynamically chan
records access control group. Dynamically changing the user access groups, host
groups, or the rules, however, can be a time consuming operation. This is done, howeve
low priority IOC task and thus does not impact normal ioc operation.

Generic
Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imb
tightly in database or channel access.

No Access Security
within an IOC

Within an IOC no access security is invoked. This means that database links and local ch
access clients calls are not subject to access control. Also test routines such as dbgf sho
be subject to access control.

Defaults It must be possible to easily define default access rules.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 59

Chapter 5: Access Security
Design Summary

This
abase
each

l access

via an

oup
tion
e. The
s. The

to be

mon

olved
ecting

age no
ients
access

00
Access Security is
Optional

When an IOC is initialized, access security is optional.

Design Overview The implementation provides a library of routines for accessing the security system.
library has no knowledge of channel access or IOC databases, i.e. it is generic. Dat
access, which is responsible for protecting an IOC database, calls library routines to add
IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channe
interact with it.

Configuration File User access groups, host access groups, and access security groups are configured
ASCII file.

Access Security
Library

The access security library consists of the following groups of routines: initialization, gr
manipulation, client manipulation, access computation, and diagnostic. The initializa
routine reads a configuration file and creates a memory resident access control databas
group manipulation routines allow members to be added and removed from access group
client routines provide services for clients attached to members.

IOC Database Access
Security

The interface between an IOC database and the access security system.

Channel Access
Security

Whenever the Channel Access broadcast server receives aca_search request and finds the
process variable, it calls asAddClient . Whenever it disconnects it calls
asRemoveClient . Whenever it issues a get or put to the database it must callasCheckGet
or asCheckPut .

Channel access is responsible for implementing the requirement of allowing the user
changed dynamically.

Comments It is likely that the access rules will be defined such that many IOCs will attach to a com
process variable. As a result the IOC containing the PV will have many CA clients.

What about password protection and encryption? I maintain that this is a problem to be s
in a level above the access security described in this document. This is the issue of prot
against the sophisticated saboteur.

Performance and
Memory
Requirements

Performance has not yet been measured but during the tests to measure memory us
noticeable change in performance during ioc initialization or during Channel Access cl
connection was noticed. Unless access privilege is violated the overhead during channel
gets and puts is only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performsca_put s on each of the
5000 channels. Each time it begins a new set of puts the value increments by 1.

3. A channel access client (caget) was created that has monitors on each of the 50
channels.
60 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface

or
ccess

of the
.11.5
us
result
ed on

caller

s the
n the
The memory consumption was measured beforeiocInit , after iocInit , after caput
connected to all channels, and aftercaget connected to all 5000 channels. This was done f
APS release 3.11.5 (before access security) and the first version which included a
security. The results were:

Before the database was loaded the memory used was 1,249,692 bytes. Thus most
memory usage before iocInit resulted from storage for records. The increase since R3
results from added fields todbCommon. Fields were added for access security, synchrono
time support and for the new caching put support. The other increases in memory usage
from the control blocks needed to support access control. The entire design was bas
maximum performance. This resulted in increased memory usage.

 Access Security Application Programmer’s Interface

Definitions typedef struct asgMember *ASMEMBERPVT;
typedef struct asgClient *ASCLIENTPVT;
typedef int (*ASINPUTFUNCPTR)(char *buf,int max_size);
typedef enum{
 asClientCOAR/*Change of access rights*/
 /*For now this is all*/
} asClientStatus;
typedef void (*ASCLIENTCALLBACK)(ASCLIENTPVT,asClientStatus);

Initialization long asInitialize(ASINPUTFUNPTR inputFunction)
long asInitFile(const char *filename,const char *substitutions)
long asInitFP(FILE *fp,const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The
must provide a routine to provide input lines forasInitialize. asInitFile and
asInitFP do their own input and also perform macro substitutions.

The initilization routines can be called multiple times. If an access system already exist
old definitions are removed and the new one initialized. Existing members are placed i
newASGs.

Group manipulation

add Member long asAddMember(ASMEMBERPVT *ppvt, char *asgName);

R3.11.5 After
Before iocInit 4,244,520 4,860,840
After iocInit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 61

Chapter 5: Access Security
Access Security Application Programmer’s Interface

d

t

ent it

not

routine

t

f the

t

e for

t

This routine adds a new member to ASGasgName. The calling routine must provide storage
for ASMEMBERPVT. Upon successful return *ppvt will be equal to the address of storage use
by the access control system. The access system keeps an orphan list for allasgNames not
defined in the access configuration.

The caller must provide permanent storage forasgName.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

remove Member long asRemoveMember(ASMEMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still pres
returns an error status of S_asLib_clientExists without removing the member.

This routine returns S_asLib_asNotActive without doing anything if access control is
active.

get Member Pvt void *asGetMemberPvt(ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This
returns the value of the pointer.

This routine returns NULL if access security is not active

put Member Pvt long asPutMemberPvt(ASMEMBERPVT pvt,void *userPvt);

This routine is used to set the pointer returned by asGetMemberPvt.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

change Group long asChangeGroup(ASMEMBERPVT *ppvt, char *newAsgName);

This routine changes the group for an existing member. The access rights of all clients o
member are recomputed.

The caller must provide permanent storage fornewAsgName.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

 Client Manipulation

add Client long asAddClient(ASCLIENTPVT *ppvt,ASMEMBERPVT pvt,int asl,
 char *user,char*host);

This routine adds a client to an ASG member. The calling routine must provide storag
ASCLIENTPVT. ASMEMBERPVTis the value that was set by callingasAddMember. asl is
the access security level.

The caller must provide permanent storage foruser andhost .

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.
62 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface

t

t

routine

lient

t

t

change Client long asChangeClient(ASCLIENTPVT ppvt,int asl,
char *user,char*host);

This routine changes one or more of the valuesasl , user , andhost for an existing client.
Again the caller must provide permanent storage foruser andhost . It is permissible to use
the sameuser andhost used in the call toasAddClient with different values.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

remove Client long asRemoveClient(ASCLIENTPVT *pvt);

This call removes a client.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

get Client Pvt void *asGetClientPvt(ASCLIENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This
returns the value of the pointer.

This routine returnsNULL if access security is not active.

put Client Pvt void asPutClientPvt(ASCLIENTPVT pvt, void *userPvt);

This routine is used to set the pointer returned byasGetClientPvt .

register Callback long asRegisterClientCallback(ASCLIENTPVT pvt,
ASCLIENTCALLBACK pcallback);

This routine registers a callback that will be called whenever the access privilege of the c
changes.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

check Get long asCheckGet(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) ge
access rights.

check Put long asCheckPut(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) put
access rights

Access Computation

compute all Asg long asComputeAllAsg(void);

This routine callsasComputeAsg for each access security group.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 63

Chapter 5: Access Security
Access Security Application Programmer’s Interface

t

t

the

t

r are
ber. If
This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

compute Asg long asComputeAsg(ASG *pasg);

This routine calculates allCALCentries for theASGand callsasCompute for each client of
each member of the specified access security group.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

compute access
rights

long asCompute(ASCLIENTPVT pvt);

This routine computes the access rights of a client. This routine is normally called by
access library itself rather than use code.

This routine returnsS_asLib_asNotActive without doing anything if access control is no
active.

Diagnostic

dump int asDump(void (*member)(ASMEMBERPVT),
void (*client)(ASCLIENTPVT),int verbose);

This routine prints the current access security database. If verbose is 0 (FALSE), then only the
information obtained from the access security file is printed.

If verbose isTRUEthen additional information is printed. The value of eachINP is displayed.
The list of members belonging to each ASG and the clients belonging to each membe
displayed. If member callback is specified as an argument, then it is called for each mem
client callback is specified, it is called for each access security client.

dump UAG int asDumpUag(char *uagname)

This routine displays the specifiedUAGor if uagname is NULLeachUAGdefined in the access
security database.

dump HAG int asDumpHag(char *hagname)

This routine displays the specifiedUAGor if uagname is NULLeachUAGdefined in the access
security database.

dump Rules int asDumpRules(char *asgname)

This routine displays the rules for the specifiedASGor if asgname is NULLthe rules for each
ASG defined in the access security database.

dump member int asDumpMem(char *asgname,
void (*memcallback)(ASMEMBERPVT),int clients)
64 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Database Access Security

t

ype.

a

s this

r
ld be

ld. It

ess

ess
This routine displays the member and, if clients isTRUE, client information for the specified
ASGor if asgname is NULL the member and client information for eachASGdefined in the
access security database. It also callsmemcallback for each member if this argument is no
NULL.

dump hash table int asDumpHash(void)

This shows the contents of the hash table used to locateUAGs andHAGs,

 Database Access Security

Access Level
definition

The definition of access level means that a level is defined for each field of each record t

1. StructurefldDes (dbBase .h), which describes the attributes of each field, contains
field access_security_level . In addition definitions exist for the symbols:ASL0 and
ASL1.

2. Each field description in a record description contains a field with the valueASLx.

The meanings of the Access Security Level definitions are as follows:

• ASL0 Assigned to fields used during normal operation

• ASL1 Assigned to fields that may be sensitive to change. Permission to acces
level implies permission forASL0.

Most record types assign ASL as follows: The fieldsVAL, RES(Reset), andCMDuse the value
ASL0. All other fields useASL1.

Access Security
Group definition

dbCommoncontains the fieldsASGand ASP. ASG(Access Security Group) is a characte
string. The value can be assigned via a database configuration tool or else a utility cou
provided to assign values during ioc initialization. ASP is an access security private fie
contains the address of anASGMEMBER.

Access Client
Definition

StructdbAddr contains a fieldasPvt , which contains the address of anASGCLIENT. This
definition is also added to structdb_addr so that old database access also supports acc
security.

Database Access
Library

Two filesasDbLib .c andasCa.c implement the interface between IOC databases and acc
control. It contains the following routines:

Initialization int asSetFilename(char *acf)

Calling this routine sets the filename of an access configuration file. The next call toasInit
uses this file. This routine must be called beforeiocInit otherwise access configuration is
disabled. Is access security is disabled during iocInit it will never be turned on.

int asSetSubstitutions(char *substitutions)

This routine specifies macro substitutions.

int asInit()
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 65

Chapter 5: Access Security
Database Access Security

by
is

e

tine

of the

s.

if

ument

nt is

el

a new

to the

r.
cess
user
ered a
int asInitAsyn(ASDBCALLBACK *pcallback)

This routines callasInitialize . If the current access configuration file, as specified
asSetFilename , is NULL then the routine just returns, otherwise the configuration file
used to create the access configuration database.

This routine is called byiocInit . asInit can also be called at any time to change th
access configuration information.

asInitAsyn spawns a taskasInitTask to perform the initialization. This allows
asInitAsyn to be called from a subroutine called by the process entry of a subrou
record.asInitTask calls taskwdInsert so that if it suspends for some reasontaskwd
can detect the failure. After initialization all records in the database are made members
appropriate access control group.

If the caller provides anASDBCALLBACKthen when either initialization completes ortaskwd
detects a failure the users callback routine is called via one of the standard callback task

asInitAsyn will return a value of-1 if access initialization is already active. It returns 0
asInitTask is successfully spawned.

Routines used by
Channel Access
Server

int asDbGetAsl(void *paddr)

Get Access Security level for the field referenced by a database access structure. The arg
is defined as avoid * so that both old and new database access can be used.

ASMEMBERPVT asDbGetMemberPvt(void *paddr)

Get ASMEMBERPVTfor the field referenced by a database access structure. The argume
defined as avoid * so that both old and new database access can be used.

Routine to test
asAddClient

int astac(char *pname,char *user,char *host)

This is a routine to testasAddClient . It simulates the calls that are made by Chann
Access.

Subroutines attached
to a subroutine record

These routines are provided so that a channel access client can force an ioc to load
access configuration database.

long asSubInit(struct subRecord *prec,int pass)
long asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written
record, asSubProcess calls asInit . If asInit returns success, it returns with
asynchronously. WhenasInitTask calls the completion routine supplied by
asSubProcess , the return status is used to place the record in alarm.

Diagnostic RoutinesThese routines provide interfaces to theasDump routines described in the previous chapte
They do NOT lock before calling the associated routine. Thus they may fail if the ac
security configuration is changing while they are running. However the danger of the
accidently aborting a command and leaving the access security system locked is consid
risk that should be avoided.

asdbdump(void)
66 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Channel Access Security

rom
ation
ccess

icated
lient

these
ime by

cessing

allback
date
ing no

llback
e
is lost

te to the
If read
This routine callsasDump with a member callback and with verboseTRUE.

aspuag(char *uagname)

This routine callsasDumpUag.

asphag(char *hagname)

This routine callsasDumpHag.

asprules(char *asgname)

This routine callsasDumpRules .

aspmem(char *asgname,int clients)

This routine callsasDumpMem.

 Channel Access Security

EPICS Access Security is designed to protect Input Output Controllers (IOCs) f
unauthorized access via the Channel Access (CA) network transparent communic
software system. This chapter describes the interaction between the CA server and the A
Security system. It also briefly describes how the current access rights state is commun
to clients of the EPICS control system via the CA communication system and the CA c
interface.

CA Server Interfaces
to the Access
Security System

The CA server callsasAddClient() andasRegisterClientCallback() for each
of the channels that a client connects to the server. The routineasRemoveClient() is
called whenever the client clears (removes) a channel or when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of
strings are supplied to the server when the client connects and can be updated at any t
the client. When these strings change thenasChangeClient() is called for each of the
channels maintained by the server for the client.

The server checks for read access when processing gets and for write access when pro
puts. If access is denied then an exception message is sent to the client.

The server checks for read access when processing requests to register an event c
(monitor) for the client. If there is read access the server always sends an initial up
indicating the current value. If there isn’t read access the server sends one update indicat
read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the ca
registered withasRegisterClientCallback() . When a channel’s access rights chang
the server communicates the current state to the client library. If read access to a channel
and there are events (monitors) registered on the channel then the server sends an upda
client for each of them indicating no access and disables future updates for each event.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 67

Chapter 5: Access Security
Access Control: Implementation Overview

channel
each of

can be

annel
access
ets and
that is

ess is
known

cros

ccess
s its
this

ry but
in the

tially
cation
nts to
ent is
back

C

has
ecurity

ase.
access is reestablished to a channel and there are events (monitors) registered on the
then the server re-enables updates and sends an initial update message to the client for
them.

Client Interfaces Additional details on the channel access client side callable interfaces to access security
obtained from the “Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each ch
that it has established. The client library receives asynchronous updates of the current
rights state from the server. It uses this state to check for read access when processing g
for write access when processing puts. If a program issues a channel access request
inconsistent with the client library’s current knowledge of the access rights state then acc
denied and an error code is returned to the application. The current access rights state as
by the client library can be tested by an applications program with the C ma
ca_read_access() andca_write_access() .

An application program can also receive asynchronous notification of changes to the a
rights state by registering a function to be called back when the client library update
storage of the access rights state. The application’s call back function is installed for
purpose by callingca_replace_access_rights_event() .

If the access rights state changes in the server after a request is queued in the client libra
before the request is processed by the server then it is possible that the request will fail
server. Under these circumstances then an exception will be raised in the client.

The server always sends one update to the client when the event (monitor) is ini
registered. If there isn’t read access then the status in the arguments to the appli
program’s event call back function indicates no read access and the value in the argume
the clients event call back is set to zero. If the read access right changes after the ev
initially registered then another update is supplied to the application programs call
function.

 Access Control: Implementation Overview

This chapter provides a few aids for reading the access security code. Include fileasLib .h
describes the control blocks used by the access security library.

Implementation
Overview

The following files form the access security system:

• asLib.h Definitions for the portion of access security that is independent of IO
databases.

• asDbLib.h Definitions for access routines that interface to an IOC database.

• asLib_lex.l Lex andYacc (actually EPICSflex andantelope) are used to parse
the access configuration file. This is thelex input file.

• asLib.y This is theyacc input file. Note that it includesasLibRoutines .c, which
do most of the work.

• asLibRoutines.c These are the routines that implement access security. This code
no knowledge of the database or channel access. It is a general purpose access s
implementation.

• asDbLib.c This contains the code for interfacing access security to the IOC datab
68 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Access Control: Implementation Overview

e.

abase
cess
p are
ause
One

o the
• asCa.c This code contains the channel access client code that implements theINP and
CALC definitions in an access security database.

• ascheck.c The Unix program which performs a syntax check on a configuration fil

Locking Because it is possible for multiple tasks to simultaneously modify the access security dat
it is necessary to provide locking. Rather than try to provide low level locking, the entire ac
security database is locked during critical operations. The only things this should hold u
access initialization, CA searches, CA clears, and diagnostic routines. It should NEVER c
record processing to wait. In addition CA gets and puts should never be delayed.
exception exists. If the ASG field of a record is changed thenasChangeGroup is called
which locks.

All operations invoked from outside the access security library that cause changes t
internal structures of the access security database.routines lock.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 69

Chapter 5: Access Security
Structures
 Structures

ASBASE
 uagList
 hagList
 asgList
 phash

ASG
 node
 name
 inpList
 ruleList
 memberList
 pavalue
 inpBad
 inpChanged

UAG
 node
 name
 list

HAG
 node
 name
 list

UAGNAME
 node
 user

HAGNAME
 node
 host

ASGINP
 node
 inp
 capvt
 pasg

inpIndex

ASGRULE
 node
 access
 level
 inpUsed
 result
 calc
 rpcl
 uaglist
 hagList

ASGHAG
 node
 phag

ASGUAG
 node
 puag

ASGCLIENT
 node

pasgMember
 user
 host
 userPvt
 pcallback
 level
 access

ASGMEMBER
 node
 pasg
 clientList
 asgName
 userPvt
70 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
ation
l. The
r string

it
printed

f

ts

at are
 Overview

This chapter describes a number of IOC test routines that are of interest to both applic
developers and system developers. All routines can be executed from the vxWorks shel
parentheses are optional, but the arguments must be separated by commas. All characte
arguments must be enclosed in “”.

The user should also be aware of the fieldTPRO, which is present in every database record. If
is setTRUEthen a message is printed each time its record is processed and a message is
for each record processed as a result of it being processed.

 Database List, Get, Put

dbl Database List:

dbl (“<record type>”,”<filename>”)

Examples

dbl
dbl “ai”

This command prints the names of records in the run time database. If<record type> is
not specified, all records are listed. If<record type> is specified, then only the names o
the records of that type are listed.

If <filename> is specified the output is written to the specified file (if the file already exis
it is overwritten). If this argument is 0 then the output is sent tostdout .

dbgrep List Record Names That Match a Pattern:

dbgrep (“<pattern>”)

Examples

dbgrep “S0*”
dbgrep “*gpibAi*”

Lists all record names that match a pattern. The pattern can contain any characters th
legal in record names as well as “*”, which matches 0 or more characters.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 71

Chapter 6: IOC Test Facilities
Database List, Get, Put

nt).

the

ult of

cord
dba Database Address:

dba (“<record_name.field_name>”)

Example

dba “aitest”
dba “aitest.VAL”

This command callsdbNameToAddr and then prints the value of each field in thedbAddr
structure describing the field. If the field name is not specified thenVAL is assumed (the two
examples above are equivalent).

dbgf Get Field:

dbgf (“<record_name.field_name>”)

Example:

dbgf “aitest”
dbgf “aitest.VAL”

This performs adbNameToAddr and then adbGetField . It prints the field type and value.
If the field name is not specified thenVAL is assumed (the two examples above are equivale

dbpf Put Field:

dbpf (“<record_name.field_name>”,”<value>”)

Example:

dbpf “aitest”,”5.0”

This command performs adbNameToAddr followed by a dbPutField and dbgf . If
<field_name> is not specifiedVAL is assumed.

dbpr Print Record:

dbpr (“<record_name>”,<interest level>)

Example

dbpr “aitest”,2

This command prints all fields of the specified record up to and including those with
indicated interest level. Interest level has one of the following values:

• 0: Fields of interest to an Application developer and that can be changed as a res
record processing.

• 1: Fields of interest to an Application developer and that do not change during re
processing.

• 2: Fields of major interest to a System developer.

• 3: Fields of minor interest to a System developer.

• 4: Fields of no interest.

 dbtr Test Record:

dbtr (“<record_name>”)

This callsdbNameToAddr, thendbProcess and finallydbpr (interest level 3). Its purpose
is to test record processing.
72 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Breakpoints

rds. If
. If

ckset
other
ds in

ining
lled an

this
ave
been

t an

alled
dbnr Print number of records:

dbnr(all_recordtypes)

This command displays the number of records of each type and the total number of reco
all_record_types is 0 then only record types with record instances are displayed
all_record_types is not 0 then all record types are displayed.

 Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lo
basis. This facility has been constructed in such a way that the execution of all locksets
than ones with breakpoints will not be interrupted. This was done by executing the recor
the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset conta
breakpoints. A record that is processed through external means, e.g.: a scan task, is ca
entrypoint into that lockset. Thedbstat command described below will list all detected
entrypoints to a lockset, and at what rate they have been detected.

dbb Set Breakpoint:

dbb (“<record_name>”)

Sets a breakpoint in a record. Automatically spawns thebkptCont , or breakpoint
continuation task (one per lockset). Further record execution in this lockset is run within
task’s context. This task will automatically quit if two conditions are met, all breakpoints h
been removed from records within the lockset, and all breakpoints within the lockset have
continued.

dbd Remove Breakpoint:

dbd (”<record_name>”)

Removes a breakpoint from a record.

dbs Single Step:

dbs (“<record_name>”)

Steps through execution of records within a lockset. If this command is called withou
argument, it will automatically step starting with the last detected breakpoint.

dbc Continue:

dbc (“<record_name>”)

Continues execution until another breakpoint is found. This command may also be c
without an argument.

dbp Print Fields Of Suspended Record:

dbp

Prints out the fields of the last record whose execution was suspended.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 73

Chapter 6: IOC Test Facilities
Error Logging

rd, it

all the

point

ecord

n

ns no

vice
dbap Auto Print:

dbap (“<record_name>”)

Toggles the automatic record printing feature. If this feature is enabled for a given reco
will automatically be printed after the record is processed.

dbstat Status:

dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists
records with breakpoints set, what records have the autoprint feature set (bydbap), and what
entrypoints have been detected. It also displays the vxWorks task ID of the break
continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: 0x23cafac
 Entrypoint: so#C: 00001 C/S: 0.1
 Breakpoint: so(ap)
LSet: 00008#B: 00001 T: 0x22fee4c
 Breakpoint: output

The above indicates that two locksets contain breakpoints. One lockset is stopped at r
“so .” The other is not currently stopped, but contains a breakpoint at record “output .”
“LSet :” is the lockset number that is being considered. “#B: ” is the number of breakpoints set
in records within that lockset. “T: ” is the vxWorks task ID of the continuation task. “C: ” is the
total number of calls to the entrypoint that have been detected. “C/S: ” is the number of those
calls that have been detected per second.(ap) indicates that the autoprint feature has bee
turned on for record “so .”

 Error Logging

eltc Display error log messages on console:

eltc(int noYes)

This determines if error messages are displayed on vxWorks console. A value of 0 mea
and any other value means yes.

 Hardware Reports

dbior I/O Report:

dbior (“<driver_name>”,<interest level>)

This command calls the report entry of the indicated driver. If<driver_name> is not
specified then the report for all drivers is generated. It also calls the report entry of all de
support modules. Interest level is one of the following:

• 0: Print a short report for each module.
74 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Scan Reports

the

0.0

er. If
• 1: Print additional information.

• 2: Print even more info. The user may be prompted for options.

dbhcr Hardware Configuration Report:

dbhcr("filename")

This command produces a report of all hardware links. To use it on the IOC, issue
command:

dbhcr > report
 or

dbhcr("report")

The report will probably not be in the sort order desired. The Unix command:

sort report > report.sort

should produce the sort order you desire.

 Scan Reports

scanppl Print Periodic Lists:

scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specidied rate. If rate is
all period lists are shown.

scanpel Print Event Lists:

scanpel(int event_number)

This routine prints a list of all records in the event scan list for the specified event nunb
event_number is 0 all event scan lists are shown.

scanpiol Print I/O Event Lists:

scanpiol

This routine prints a list of all records in the I/O event scan lists.

 Time Server Report

TSreport Format:

TSreport

This routine prints out information about the Time server. This includes:

• Slave or Master

• Soft or Hardware synchronized
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 75

Chapter 6: IOC Test Facilities
Access Security Commands

file in
use the
was
cord.

en the

en the

oups.

ups if
to
• Clock and Sync rates

• etc.

 Access Security Commands

asSetFilename Format:

asSetFilename (“<filename>”)

This command defines a new access security file.

asInit Format:

asInit

This command reinitializes the access security system. It rereads the access security
order to create the new access security database. This command is useful either beca
asSetFilename command was used to change the file or because the file itself
modified. Note that it is also possible to reinitialize the access security via a subroutine re
See the access security document for details.

asdbdump Format:

asdbdump

This provides a complete dump of the access security database.

aspuag Format:

aspuag (“<user access group>”)

Print the members of the user access group. If no user access group is specified th
members of all user access groups are displayed.

asphag Format:

asphag (“<host access group>”)

Print the members of the host access group. If no host access group is specified th
members of all host access groups are displayed.

asprules Format:

asprules (“<access security group>”)

Print the rules for the specified access security group or if no group is specified for all gr

aspmem Format:

aspmem (“<access security group>”, <print clients>)

Print the members (records) that belong to the specified access security group, for all gro
no group is specified. If<print clients> is (0, 1) then Channel Access clients attached
each member (are not, are) shown.
76 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Channel Access Reports

ient
me,
the

the
the
t was
onse
lient,
, the

tes
vel 2
ory

st of
s are
 Channel Access Reports

ca_channel_status Format:

ca_channel_status (taskid)

Prints status for each channel in use by specialized vxWorks task.

casr Channel Access Server Report

casr(level)

Level can have one of the following values:

0
Prints server’s protocol version level and a one line summary for each cl
attached. The summary lines contain the client’s login name, client’s host na
client’s protocol version number, and the number of channel created within
server by the client.

1
Level one provides all information in level 0 and adds the task id used by
server for each client, the client’s IP protocol type, the file number used by
server for the client, the number of seconds elapsed since the last reques
received from the client, the number of seconds elapsed since the last resp
was sent to the client, the number of unprocessed request bytes from the c
the number of response bytes which have not been flushed to the client
client’s IP address, the client’s port number, and the client’s state.

2
Level two provides all information in levels 0 and 1 and adds the number of by
allocated by each client and a list of channel names used by each client. Le
also provides information about the number of bytes in the server’s free mem
pool, the distribution of entries in the server’s resource hash table, and the li
IP addresses to which the server is sending beacons. The channel name
shown in the form:

<name>(nrw)

where
n is number of ca_add_events the client has on this channel
r is (-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

dbel Format:

dbel (“<record_name>”)

This routine prints the Channel Access event list for the specified record.

dbcar Database to Channel Access Report - See “Record Link Reports”
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 77

Chapter 6: IOC Test Facilities
Interrupt Vectors

ation

cords

ution
 Interrupt Vectors

veclist Format:

veclist

Print Interrupt Vector List

 EPICS

epicsPrtEnvParams Format:

epicsPrtEnvParams

Print Environment Variables

epicsRelease Format:

coreRelease

Print release of iocCore.

 Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Applic
Developers.

dbt Measure Time To Process A Record:

dbt (“<record_name”)

Times the execution of 100 successive processings of recordrecord_name . Note that
process passive and forward links within this record may incur the processing of other re
in its lockset. This function is a wrapper around the VxWorkstimexN() function, and
directly displays its output. Therefore one must divide the result by 100 to get the exec
time for one processing ofrecord_name .

dbtgf Test Get Field:

dbtgf (“<record_name.field_name>”)

Example:

dbtgf “aitest”
dbtgf “aitest.VAL”
78 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Record Link Routines

tem

tabase

opers

gs. If
t as

ified
This performs adbNameToAddr and then callsdbGetField with all possible request types
and options. It prints the results of each call. This routine is of most interest to sys
developers for testing database access.

dbtpf Test Put Field:

dbtpf (“<record_name.field_name>”,”<value>”)

Example:

dbtpf “aitest”,”5.0”

This command performs adbNameToAddr, then callsdbPutField, followed bydbgf for
each possible request type. This routine is of interest to system developers for testing da
access.

dbtpn Test Put Notify:

dbtpn (“<record_name.field_name>”,”<value>”)

Example:

dbtpn “aitest”,”5.0”

This command performs adbNameToAddr, then callsdbPutNotify and has a callback
routine that prints a message when it is called. This routine is of interest to system devel
for testing database access.

 Record Link Routines

dblsr Lock Set Report:

dblsr(recordname,level)

This command generates a report showing the lock set to which each record belon
recordname is 0 all records are shown, otherwise only records in the same lock se
recordname are shown.

level can have the following values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

dbcar Database to channel access report

dbcar(recordname,level)

This command generates a report showing database channel access links. Ifrecordname is 0
then information about all records is shown otherwise only information about the spec
record.

level can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 79

Chapter 6: IOC Test Facilities
Old Database Access Testing

he old

opers

lopers
dbhcr Report hardware links. See “Hardware Reports”.

 Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test t
database access interface, which is still used by Channel Access.

gft Get Field Test:

gft (“<record_name.field_name>”)

Example:

gft “aitest”
gft “aitest.VAL”

This performs adb_name_to_addr and then callsdb_get_field with all possible
request types. It prints the results of each call. This routine is of interest to system devel
for testing database access.

pft Put Field Test:

pft (“<record_name.field_name>”,”<value>”)

Example:

pft “aitest”,”5.0”

This command performs adb_name_to_addr , db_put_field , db_get_field and
prints the result for each possible request type. This routine is of interest to system deve
for testing database access.

tpn Test Put Notify:

tpn (“<record_name.field_name>”,”<value>”)

Example:

tpn “aitest”,”5.0”

This routine testsdbPutNotify via the old database access interface.

 Routines to dump database information

dbDumpPath Dump Path:

dbDumpPath(pdbbase)

 dbDumpPath(pdbbase)

The current path for database includes is displayed.
80 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Routines to dump database information

third

third
dbDumpMenu Dump Menu:

dbDumpMenu(pdbbase,”<menu>”)

 dbDumpMenu(pdbbase,”menuScan”)

If the second argument is 0 then all menus are displayed.

dbDumpRecordTypeDump Record Description:

dbDumpRecordType(pdbbase,”<record type>”)

 dbDumpRecordType(pdbbase,”ai”)

If the second argument is 0 then all descriptions of all records are displayed.

dbDumpFldDes Dump Field Description:

dbDumpFldDes(pdbbase,”<record type>”,”<field name>”)

 dbDumpFldDes(pdbbase,”ai”,”VAL”)

If the second argument is 0 then the field descriptions of all records are displayed. If the
argument is 0 then the description of all fields are displayed.

dbDumpDevice Dump Device Support:

dbDumpDevice(pdbbase,”<record type>”)

 dbDumpDevice(pdbbase,”ai”)

If the second argument is 0 then the device support for all record types is displayed.

dbDumpDriver Dump Driver Support:

dbDumpDriver(pdbbase)

 dbDumpDriver(pdbbase)

dbDumpRecords Dump Record Instances:

dbDumpRecords(pdbbase,”<record type>”,level)

 dbDumpRecords(pdbbase,”ai”)

If the second argument is 0 then the record instances for all record types is displayed. The
argument determines which fields are displayed just like for the commanddbpr.

dbDumpBreaktable Dump breakpoint table
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 81

Chapter 6: IOC Test Facilities
Routines to dump database information

s are

rocess
ash to
dbDumpBreaktable(pdbbase,name)

 dbDumpBreaktable(pdbbase,”typeKdegF”)

This command dumps a breakpoint table. If the second argument is 0 all breakpoint table
dumped.

dbPvdDump Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

 dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the p
variable directory. If verbose is not 0 then the command also displays the names which h
each hash table entry.
82 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Error Logging
t and
gal
to the
rror.

e of

tive
t and
rror

lient

tive
hould

es of

 Task.

asses

to a

age
 Overview

Errors detected by an IOC can be divided into classes: Errors related to a particular clien
errors not attributable to a particular client. An example of the first type of error is an ille
Channel Access request. For this type of error, a status value should be passed back
client. An example of the second type of error is a device driver detecting a hardware e
This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

• In many cases it is not possible for the routine detecting an error to decide which typ
error occurred.

• Normally, only the routine detecting the error knows how to generate a fully descrip
error message. Thus, if a routine decides that the error belongs to a particular clien
merely returns an error status value, the ability to generate a fully descriptive e
message is lost.

• If a routine always generates fully descriptive error messages then a particular c
could cause error message storms.

• While developing a new application the programmer normally prefers fully descrip
error messages. For a production system, however, the system wide error handler s
not normally receive error messages cause by a particular client.

If used properly, the error handling facilities described in this chapter can process both typ
errors.

This chapter describes the following:

• Error Message Generation Routines - Routines which pass messages to the errlog

• errlog Task - A task that displays error messages on the target console and also p
the messages to all registered system wide error logger.

• status codes - EPICS status codes.

• iocLog- A system wide error logger supplied with base. It writes all messages
system wide file.

NOTE: recGbl error routines are also provided. They in turn call one of the error mess
routines.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 83

Chapter 7: IOC Error Logging
Error Message Routines

that
n" by

the
is
 Error Message Routines

Basic Routines int errlogPrintf(const char *pformat, ...);
 int errlogVprintf(const char *pformat,va_list pvar);

 int errlogMessage(const char *message);

errlogPrintf and errlogVprintf are likeprintf andvprintf provided by the
standard C library, except that the output is sent to the errlog task. Consult any book
describes the standard C library such as "The C Programming Language ANSI C Editio
Kernighan and Ritchie.

errlogMessage sends message to the errlog task

Log with Severity typedef enum {
 errlogInfo,errlogMinor,errlogMajor,errlogFatal
 }errlogSevEnum;

 int errlogSevPrintf(const errlogSevEnum severity,
 const char *pformat, ...);
 int errlogSevVprintf(const errlogSevEnum severity,
 const char *pformat,va_list pvar);

 char *errlogGetSevEnumString(const errlogSevEnum severity);

 void errlogSetSevToLog(const errlogSevEnum severity);
 errlogSevEnum errlogGetSevToLog(void);

errlogSevPrintf and errlogSevVprintf are like errlogPrintf and
errlogVprintf except that they add the severity to the beginning of the message in
form "sevr=<value>" where value is on of "info, minor, major, fatal". Also the message
suppressed if severity is less than the current severity to suppress.

errlogGetSevEnumString gets the string value of severity.

errlogSetSevToLog sets the severity to log.errlogGetSevToLog gets the current
severity to log.

Status Routines void errMessage(long status, char *message);

 void errPrintf(long status, const char *pFileName,
 int lineno, const char *pformat, ...);

RoutineerrMessage (actually a macro that callserrPrintf) has the following format:

void errMessage(long status, char *message);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values” above.
84 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Error Logging
errlog Task

ng

stems

ific

.

ility.

utines

read by
When
ages is
sages is

uncated
t long

s most

t calls
ges are
errMessage , via a call toerrPrintf , prints the message, the status symbol and stri
values, and the name of the task which invokederrMessage . It also prints the name of the
source file and the line number from which the call was issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsy
provide routines built on top oferrMessage which generate descriptive messages.

An IOC global variableerrVerbose , defined as anexternal in errMdef.h , specifies
verbose messages. IferrVerbose is TRUEthenerrMessage should be called whenever an
error is detected even if it is known that the error belongs to a specific client. IferrVerbose
is FALSEthenerrMessage should be called only for errors that are not caused by a spec
client.

RoutineerrPrintf has the following format:

void errPrintf(long status, __FILE__, __LINE__,
char *fmtstring <arg1>, ...);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values”, above.

FILE and LINE are defined as:

• __FILE__ As shown orNULL if the file name and line number should not be printed

• __LINE__ As shown

The remaining arguments are just like the arguments to the Cprintf routine.errVerbose
determines if the filename and line number are shown.

Obsolete Routines int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogVprintf. They are provided for compatib

 errlog Task

The error message routines can be called by any non-interrupt level code. These ro
merely pass the message to the errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is
the errlog task. The message queue uses a fixed block of memory to hold all messages.
the message queue is full additional messages are rejected but a count of missed mess
kept. The next time the message queue empties an extra message about the missed mes
generated.

The maximum message size is 256 characters. If a message is longer, the message is tr
and a message explaining that it was truncated is appended. There is a chance tha
messages corrupt memory. This only happens if client code is defective. Long message
likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version jus
fprintf or vfprintf instead of using a separate task and a message queue. Thus host messa
NOT sent to a system wide error logger.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 85

Chapter 7: IOC Error Logging
Status Codes

are the

s this
essages

lt is
ver

bols

be

rning

to the
stem
alue.
stem

le

lowing
Add and Remove
Log Listener

typedef void(*errlogListener) (const char *message);
 void errlogAddListener(errlogListener listener);
 void errlogRemoveListener(errlogListener listener);

These routines add/remove a callback that receives each error message. These routines
interface to the actual system wide error handlers.

target console
routines

int eltc(int yesno); /* error log to console (0 or 1) */
 int errlogInit(int bufsize);

eltc determines if errlog task writes message to the console. During error messages storm
command can be used to suppress console messages. A argument of 0 suppresses the m
and any other value lets the message go to the console.

errlogInit can be used to initialize the error logging system with a larger buffer. The defau
1280 bytes. An extra MAX_MESSAGE_SIZE (currently 256) bytes are allocated but ne
used. This is a small extra protection against long error messages.

 Status Codes

EPICS defined status values provide the following features:

• Whenever possible, IOC routines return a status value: (0, non-0) means (OK, ERROR).

• The include files for each IOC subsystem contain macros defining error status sym
and strings.

• Routines are provided for run time access of the error status symbols and strings.

• A global variable errVerbose helps code decide if error messages should
generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated conce
EPICS status values. No consensus was reached.

Whenever it makes sense, IOC routines return a long word status value encoded similar
vxWorks error status encoding. The most significant short word indicates the subsy
module within which the error occurred. The low order short word is a subsystem status v
In order that status values do not conflict with the vxWorks error status values all subsy
numbers are greater than 500.

A file epics/share/epicsH/errMdef.h defines each subsystem number. For examp
thedefine for the database access routines is:

#define M_dbAccess (501 << 16) \
/*Database Access Routines*/

Directory ”epics/share/epicsH ” contains aninclude library for every IOC subsystem
that returns standard status values. The status values are encoded with lines of the fol
format:

#define S_xxxxxxx value /*string value*/

For example:

#define S_dbAccessBadDBR (M_dbAccess|3) \
/*Invalid Database Request*/
86 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Error Logging
iocLog

the

each
ssages

area
rc/util/

ble
server.
ble is
f.

cular
me,
essage

ced in
e log
t end
orks

ent

ular
e). If
For example, whendbGetField detects a bad database request type, it executes
statement:

return(S_dbAccessBadDBR);

The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }

 iocLog

This consists of two modules: iocLogServer and iocLogClient. The client code runs on
ioc and listens for the messages generated by the errlog system. It also reports the me
from vxWorks logMsg.

iocLogServer This runs on a host. It receives messages for all enabled iocLogClients in the local
network. The messages are written to a file. Epics base provides a startup file "base/s
rc2.logServer", which is a shell script to start the server. Consult this script for details.

iocLogClient This runs on each ioc. It is started by default when iocInit runs. The global varia
iocLogDisable can be used to enable/disable the messages from being sent to the
Setting this variable to (0,1) (enables,disables) the messages generation. If iocLogDisa
set to 1 immediately after iocCore is loaded then iocLogClient will not even initialize itsel

Initialize Logging Initialize the logging system. This system traps alllogMsg calls and sends a copy to a Unix
file. Note that this can be disabled by issuing the commandiocLogDisable =1 before
issuingiocInit .

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of IOC error messages is stored in a cir
ASCII file on a PC or UNIX workstation. Each entry in the log contains the IOC's DNS na
the date and time when the message was received by the log server, and the text of the m
generated on the IOC.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are pla
the log. Messages generated by the vxWorks function logMsg() are also placed in th
(logMsg() can be safely called from interrupt level). Messages generated by printf() do no
up in the log and are instead used primarily by diagnostic functions called from the vxW
shell.

To start a log server on a UNIX or PC workstation you must first set the following environm
variables and then run the executable "iocLogServer" on your PC or UNIX workstation.

EPICS_IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS_IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circ
file and writes new messages over old messages at the beginning of the fil
the value is zero then there is no limit on the size of the log file.

EPICS_IOC_LOG_FILE_COMMAND
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 87

Chapter 7: IOC Error Logging
iocLog

ion
ame

s
sed
e is

nment
rver

nfig/

se on

llows:
A shell command string used to obtain the log file path name during initializat
and in response to SIGHUP. The new path name will replace any path n
supplied in EPICS_IOC_LOG_FILE_NAME.
Thus, if EPICS_IOC_LOG_FILE_NAME is
"a/b/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/"
the log server will be stored at "A/B/c.log"
If EPICS_IOC_LOG_FILE_COMMAND is empty then this behavior i
disabled. This feature was donated to the collaboration by KECK, and it is u
by them for switching to a new directory at a fixed time each day. This variabl
currently used only by the UNIX version of the log server.

EPICS_IOC_LOG_PORT
THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the enviro
variable EPICS_IOC_LOG_INET to the IP address of the host that is running the log se
and EPICS_IOC_LOG_PORT to the TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/co
CONFIG_SITE_ENV and $(EPICS_BASE)/config/CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for u
other host architectures.

Configuring a
Private Log Server

In a testing environment it is desirable to use a private log server. This can be done as fo

• Add a putenv command to your IOC startup file. For example
ld < iocCore
putenv("EPICS_IOC_LOG_INET=xxx.xxx.xxx.xxx")

The inet address is for your host workstation.

• On you host start a version of the log server.
88 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
t a C
pport
ting

ecord
allow

ept of
upport
port
been

tabase
e can

ng. In
what
ust be
ecord
pport

e the
t

 Overview

The purpose of this chapter is to describe record support in sufficient detail such tha
programmer can write new record support modules. Before attempting to write new su
modules, you should carefully study a few of the existing support modules. If an exis
support module is similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of r
processing. The details of what happens are dependent on the record type. In order to
new record types and new device types without impacting the core IOC system, the conc
record support and device support has been created. For each record type, a record s
module exists. It is responsible for all record specific details. In order to allow a record sup
module to be independent of device specific details, the concept of device support has
created.

A record support module consists of a standard set of routines that can be called by da
access routines. This set of routines implements record specific code. Each record typ
define a standard set of device support routines specific to that record type.

By far the most important record support routine isprocess , whichdbProcess calls when
it wants to process a record. This routine is responsible for the details of record processi
many cases it calls a device support I/O routine. The next section gives an overview of
must be done in order to process a record. Next is a description of the entry tables that m
provided by record and device support modules. The remaining sections give example r
and device support modules and describe some global routines useful to record su
modules.

The record and device support modules are the only modules that are allowed to includ
record specific include files as defined inbase/rec . Thus they are the only routines tha
access record specific fields without going through database access.

 Overview of Record Processing

The most important record support routine isprocess . This routine determines what record
processing means. Before the record specific “process ” routine is called, the following has
already been done:

• Decision to process a record.

• Check that record is not active, i.e.pact must be FALSE.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 89

Chapter 8: Record Support
Record Support and Device Support Entry Tables

the

. It is
the

located

.
.

ithout
device
le for

record

is the
Table
• Check that the record is not disabled.

The process routine, together with its associated device support, is responsible for
following tasks:

• Set record active while it is being processed

• Perform I/O (with aid of device support)

• Check for record specific alarm conditions

• Raise database monitors

• Request processing of forward links

A complication of record processing is that some devices are intrinsically asynchronous
NEVER permissible to wait for a slow device to complete. Asynchronous records perform
following steps:

1. Initiate the I/O operation and setpact TRUE

2. Determine a method for again calling process when the operation completes

3. Return immediately without completing record processing

4. When process is called after the I/O operation complete record processing

5. Setpact FALSE and return

The examples given below show how this can be done.

 Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are
via the data structures defined inepics/share/epicsH/recSup.h . The concept of
record support routines isolates theiocCore software from the details of each record type
Thus new records can be defined and supported without affecting the IOC core software

Each record type also has zero or more sets of device support routines. Record types w
associated hardware, e.g. calculation records, normally do not have any associated
support. Record types with associated hardware normally have a device support modu
each device type. The concept of device support isolates IOC core software and even
support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines
same for every record type. These routines are located via a Record Support Entry
(RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; /* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN special; /* special processing */
RECSUPFUN get_value; /* OBSOLETE: Just leave NULL */
RECSUPFUN cvt_dbaddr; /* cvt dbAddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;
90 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Example Record Support Module

rm:

s the

be the

itions
RECSUPFUN get_precision;
RECSUPFUN get_enum_str; /* get string from enum */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum from string */
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;

};

Each record support module must define its RSET. The external name must be of the fo

<record_type>RSET

Any routines not needed for the particular record type should be initialized to the valueNULL.
Look at the example below for details.

Device support routines are located via a Device Support Entry Table (DSET), which ha
following structure:

struct dset { /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get_ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/

};

Each device support module must define its associated DSET. The external name must
same as the name which appears indevSup.ascii .

Any record support module which has associated device support must also include defin
for accessing its associated device support modules. The field”dset ”, which is located in
dbCommon, contains the address of the DSET. It is given a value byiocInit .

 Example Record Support Module

This section contains the skeleton of a record support package. The record type isxxx and the
record has the following fields in addition to thedbCommonfields: VAL, PREC, EGU, HOPR,
LOPR, HIHI , LOLO, HIGH, LOW, HHSV, LLSV, HSV, LSV, HYST, ADEL, MDEL, LALM, ALST,
MLST. These fields will have the same meaning as they have for theai record. Consult the
Record Reference manual for a description.

Declarations /* Create RSET - Record Support Entry Table*/
#define report NULL
#define initialize NULL
static long init_record();
static long process();
#define special NULL
#define get_value NULL
#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 91

Chapter 8: Record Support
Example Record Support Module

r the
nes.

tines
static long get_units();
static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxxRSET={
RSETNUMBER,
report,
initialize,
init_record,
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,
get_graphic_double,
get_control_double,
get_alarm_double};

/* declarations for associated DSET */
typedef struct xxxdset { /* analog input dset */

long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure,

success)*/
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_xxx;

}xxxdset;

/* forward declaration for internal routines*/
static void alarm(xxxRecord *pxxx);
static void monitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template fo
associated Device Support Entry Table (DSET), and forward declarations to private routi

The RSET must be declared with an external name ofxxxRSET. It defines the record support
routines supplied for this record type. Note that forward declarations are given for all rou
supported and aNULL declaration for any routine not supported.

The template for the DSET is declared for use by this module.

init_record static long init_record(void *precord, int pass)
92 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Example Record Support Module

n
ords
fields

cord.
port
to the
s is
pass
{
xxxRecord*pxxx = (xxxRecord *)precord;
xxxdset *pdset;
long status;

if(pass==0) return(0);

if((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
recGblRecordError(S_dev_noDSET,pxxx,”xxx: init_record”);
return(S_dev_noDSET);

}
/* must have read_xxx function defined */
if((pdset->number < 5) || (pdset->read_xxx == NULL)) {

recGblRecordError(S_dev_missingSup,pxxx,
”xxx: init_record”);

return(S_dev_missingSup);
}
if(pdset->init_record) {

if((status=(*pdset->init_record)(pxxx))) return(status);
}
return(0);

}

This routine, which is called byiocInit twice for each record of typexxx , checks to see if it
has a proper set of device support routines and, if present, calls theinit_record entry of the
DSET.

During the first call toinit_record (pass=0) only initializations relating to this record ca
be performed. During the second call (pass=1) initializations that may refer to other rec
can be performed. Note also that during the second pass, other records may refer to
within this record. A good example of where these rules are important is a waveform re
TheVAL field of a waveform record actually refers to an array. The waveform record sup
module must allocate storage for the array. If another record has a database link referring
waveformVAL field then the storage must be allocated before the link is resolved. Thi
accomplished by having the waveform record support allocate the array during the first
(pass=0) and having the link reference resolved during the second pass (pass=1).

process static long process(void *precord)
{

xxxRecord*pxxx = (xxxRecord *)precord;
 xxxdset *pdset = (xxxdset *)pxxx->dset;

long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt call again*/
pxxx->pact=TRUE;
recGblRecordError(S_dev_missingSup,pxxx,”read_xxx”);
return(S_dev_missingSup);

}

/* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */
 /* return if beginning of asynch processing*/
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 93

Chapter 8: Record Support
Example Record Support Module

ocess
ed.
f what

s. For
ill

ts
if(!pact && pxxx->pact) return(0);
pxxx->pact = TRUE;
recGblGetTimeStamp(pxxx);

/* check for alarms */
alarm(pxxx);
/* check event list */
monitor(pxxx);
/* process the forward scan link record */
recGblFwdLink(pxxx);

pxxx->pact=FALSE;
return(status);

}

The record processing routines are the heart of the IOC software. The record specific pr
routine is called bydbProcess whenever it decides that a record should be process
Process decides what record processing really means. The above is a good example o
should be done. In addition to being called bydbProcess the process routine may also be
called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routine
example, if read_xxx is an asynchronous routine, the following sequence of events w
occur:

• process is called withpact FALSE

• read_xxx is called. Sincepact is FALSE it starts I/O, arranges callback, and se
pact TRUE

• read_xxx returns

• becausepact went fromFALSE to TRUE process just returns

• Any new call todbProcess is ignored because it findspact TRUE

• Sometime later the callback occurs andprocess is called again.

• read_xxx is called. Sincepact is TRUE it knows that it is a completion request.

• read_xxx returns

• process completes record processing

• pact is setFALSE

• process returns

At this point the record has been completely processed. The next timeprocess is called
everything starts all over from the beginning.

Miscellaneous Utility
Routines

static long get_units(DBADDR *paddr, char *units)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;

strncpy(units,pxxx->egu,sizeof(pxxx->egu));
return(0);

}

static long get_graphic_double(DBADDR *paddr,
struct dbr_grDouble *pgd)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
94 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Example Record Support Module

kage.
next
int fieldIndex = dbGetFieldIndex(paddr);

if(fieldIndex == xxxRecordVAL) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;

} else recGblGetGraphicDouble(paddr,pgd);
return(0);

}
/* similar routines would be provided for */
/* get_control_double and get_alarm_double*/

These are a few examples of various routines supplied by a typical record support pac
The functions that must be performed by the remaining routines are described in the
section.

Alarm Processing static void alarm(xxxRecord *pxxx)
{

double val;
float hyst,lalm,hihi,high,low,lolo;
unsigned short hhsv,llsv,hsv,lsv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

hihi=pxxx->hihi; lolo=pxxx->lolo;
high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->llsv;
hsv=pxxx->hsv; lsv=pxxx->lsv;
val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */
if (hhsv && (val >= hihi
|| ((lalm==hihi) && (val >= hihi-hyst)))) {

if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)
 pxxx->lalm = hihi;

return;
}
/* alarm condition lolo */
if (llsv && (val <= lolo
|| ((lalm==lolo) && (val <= lolo+hyst)))) {

if(recGblSetSevr(pxxx,LOLO_ALARM,pxxx->llsv))
pxxx->lalm = lolo;

return;
}
/* alarm condition high */
if (hsv && (val >= high
|| ((lalm==high) && (val >= high-hyst)))) {

if(recGblSetSevr(pxxx,HIGH_ALARM,pxxx->hsv))
pxxx->lalm = high;

return;
}

EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 95

Chapter 8: Record Support
Example Record Support Module

The
n raise
erity

larm
oise
to a
/* alarm condition low */
if (lsv && (val <= low
|| (lalm==low) && (val <= low+hyst)))) {

if(recGblSetSevr(pxxx,LOW_ALARM,pxxx->lsv))
pxxx->lalm = low;

return;
}
/*we get here only if val is out of alarm by at least hyst*/
pxxx->lalm=val;
return;

}

This is a typical set of code for checking alarms conditions for an analog type record.
actual set of code can be very record specific. Note also that other parts of the system ca
alarms. The algorithm is to always maximize alarm severity, i.e. the highest sev
outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent a
storms from occurring in the event that the current value is very near an alarm limit and n
makes it continually cross the limit. It honors the hysteresis only when the value is going
lower alarm severity.

Raising Monitors static void monitor(xxxRecord *pxxx)
{

unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);
/* check for value change */
delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->mdel) {

/* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pxxx->mlst = pxxx->val;

}
/* check for archive change */
delta = pxxx->alst - pxxx->val;
if(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {

/* post events on value field for archive change */
monitor_mask |= DBE_LOG;
/* update last archive value monitored */
pxxx->alst = pxxx->val;

}
/* send out monitors connected to the value field */
if (monitor_mask){

db_post_events(pxxx,&pxxx->val,monitor_mask);
}
return;

}

96 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Record Support Routines

larm
alarm

al that
the

y this

the

by

y to a

ost

type
All record types should callrecGblResetAlarms as shown. Note thatnsta andnsev
will have the value 0 after this routine completes. This is necessary to ensure that a
checking starts fresh after processing completes. The code also takes care of raising
monitors when a record changes from an alarm state to the no alarm state. It is essenti
record support routines follow the above model or else alarm processing will not follow
rules.

Analog type records should also provide monitor and archive hysteresis fields as shown b
example.

db_post_events results in channel access issuing monitors for clients attached to
record and field. The call is

int db_post_events(void *precord, void *pfield,
 unsigned int monitor_mask)

where:

precord - The address of the record
pfield - The address of the field
monitor_mask - A bit mask that can be any combinations of the following:

DBE_ALARM - A change of alarm state has occured. This is set
recGblResetAlarms .
DBE_LOG - Archive change of state.
DBE_VAL - Value change of state

IMPORTANT : The record support module is responsible for callingdb_post_event for
any fields that change as a result of record processing. Also it shouldNOT call
db_post_event for fields that do not change.

 Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not appl
specific record type must be declaredNULL.

Generate Report of
Each Field in Record

report(void *precord); /* addr of record*/

This routine is not used by most record types. Any action is record type specific.

Initialize Record
Processing

init(void);

This routine is called once at IOC initialization time. Any action is record type specific. M
record types do not need this routine.

Initialize Specific
Record

init_record(
void *precord, /* addr of record*/
int pass);

iocInit calls this routine twice (pass=0 and pass=1) for each database record of the
handled by this routine. It must perform the following functions:

• Check and/or issue initialization calls for the associated device support routines.

• Perform any record type specific initialization.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 97

Chapter 8: Record Support
Record Support Routines

ced

to by
field

er
d

s

port

f the

s

f the

s

s

• During the first pass it can only perform initializations that affect the record referen
by precord.

• During the second pass it can perform initializations that affect other records.

Process Record process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

Special Processing special(
struct dbAddr *paddr,
int after);/*(FALSE,TRUE)=>(Before,After)Processing*/

This routine implements the record type specific special processing for the field referred
dbAddr . Note that it is called twice. Once before any changes are made to the associated
and once after. Filespecial.h defines special types. This routine is only called for us
special fields, i.e. fields withSPC_xxx >= 100. A field is declared special in the ASCII recor
definition file. New values should not by added tospecial.h , instead useSPC_MOD.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Value This routine is no longer used. It should be left as a NULL procedure in the record sup
entry table.

Convert dbAddr
Definitions

cvt_dbaddr(struct dbAddr *paddr);

This routine is called bydbNameToAddr if the field has special set equal toSPC_DBADDR. A
typical use is when a field refers to an array. This routine can change any combination o
dbAddr fields:no_elements , field_type , field_size , special, and dbr_type .
For example if theVAL field of a waveform record is passed todbNameToAddr,
cvt_dbaddr would changedbAddr so that it refers to the actual array rather thenVAL.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Array
Information

get_array_info(
struct dbAddr *paddr,
long *no_elements,
long *offset);

This routine returns the current number of elements and the offset of the first value o
specified array. The offset field is meaningful if the array is actually a circular buffer.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Put Array
Information

put_array_info(
struct dbAddr *paddr,
long nNew);

This routine is called after new values have been placed in the specified array.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Units get_units(
98 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Record Support Routines

s

nvert

s

pe

s

s

h the
tabase

s

struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Precision get_precision(
struct dbAddr *paddr,
long *precision);

This routine gets the precision, i.e. number of decimal places, which should be used to co
the field value to an ASCII string.recGblGetPrec should be called for fields not directly
related to the value field.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Enumerated
String

get_enum_str(
struct dbAddr *paddr,
char *p);

This routine sets*p equal to the ASCII string for the field value. The field must have ty
DBF_ENUM.

Look at the code for thebi or mbbi records for examples.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Strings for
Enumerated Field

get_enum_strs(
struct dbAddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structuredbr_enumStrs .

Look at the code for thebi or mbbi records for examples.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Put Enumerated
String

put_enum_str(
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string wit
string values associated with each enumerated value and if it finds a match sets the da
field equal to the index of the string which matched.

Look at the code for thebi or mbbi records for examples.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Graphic Double
Information

get_graphic_double(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 99

Chapter 8: Record Support
Global Record Support Routines

e

s

e

s

s

r use
to use

. The
m is
. This
alarm
mon)

ndling

e

mple
This routine fills in the graphics related fields of structuredbr_grDouble .
recGblGetGraphicDouble should be called for fields not directly related to the valu
field.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Control Double
Information

get_control_double(
struct dbAddr *paddr,
struct dbr_ctrlDouble *p); /* addr of return info*/

This routine gives values to all fields of structuredbr_ctrlDouble .
recGblGetControlDouble should be called for fields not directly related to the valu
field.

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

Get Alarm Double
Information

get_alarm_double(
struct dbAddr *paddr,
struct dbr_alDouble *p); /* addr of return info*/

This routine gives values to all fields of structuredbr_alDouble .

The database access routine,dbGetFieldIndex can be used to determine which field i
being modified.

 Global Record Support Routines

A number of global record support routines are available. These routines are intended fo
by the record specific processing routines but can be called by any routine that wishes
their services.

The name of each of these routines begins with ”recGbl ”.

Alarm Status and
Severity

Alarms may be raised in many different places during the course of record processing
algorithm is to maximize the alarm severity, i.e. the highest severity outstanding alar
raised. If more than one alarm of the same severity is found then the first one is reported
means that whenever a code fragment wants to raise an alarm, it does so only if the
severity it will declare is greater then that already existing. Four fields (in database com
are used to implement alarms:sevr , stat , nsev , andnsta . The first two are the status and
severity after the record is completely processed. The last two fields (nsta andnsev) are the
status and severity values to set during record processing. Two routines are used for ha
alarms. Whenever a routine wants to raise an alarm it callsrecGblSetSevr . This routine
will only changensta andnsev if it will result in the alarm severity being increased. At th
end of processing, the record support module must callrecGblResetAlarms . This routine
setsstat =nsta , sevr =nsev , nsta =0, andnsev =0. If stat or sevr has changed value
since the last call it callsdb_post_event for stat and sevr and returns a value of
DBE_ALARM. If no change occured it returns 0. Thus after callingrecGblResetAlarms
everything is ready for raising alarms the next time the record is processed. The exa
record support module presented above shows how these macros are used.

recGblSetSevr(
100 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Global Record Support Routines

ese

ing

ing

ing
.

void *precord,
short nsta,
short nsevr);

Returns: (TRUE, FALSE) if (did, did not) changensta andnsev .

unsigned short recGblResetAlarms(void *precord);

Returns: Initial value formonitor_mask

Alarm
Acknowledgment

Database common contains two additional alarm related fields:acks (Highest severity
unacknowledged alarm) andackt (does transient alarm need to be acknowledged). Th
field are handled byiocCore andrecGblResetAlarms and are not the responsibility of
record support. These fields are intended for use by the alarm handler.

Generate Error:
Process Variable
Name, Caller,
Message

SUGGESTION: useepicsPrintf instead of this for new code.

recGblDbaddrError(
long status,
struct dbAddr *paddr,
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the follow
information: Status information, process variable name, calling routine.

Generate Error:
Status String,
Record Name, Caller

SUGGESTION: useepicsPrintf instead of this for new code.
recGblRecordError(

long status,
void *precord, /* addr of record */
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the follow
information: Status information, record name, calling routine.

Generate Error:
Record Name,
Caller, Record
Support Message

SUGGESTION: useepicsPrintf instead of this for new code.
recGblRecsupError(

long status,
struct dbAddr *paddr,
char *pcaller_name, /* calling routine name */
char *psupport_name); /* support routine name*/

This routine interfaces with the system wide error handling system to display the follow
information: Status information, record name, calling routine, record support entry name

Get Graphics
Double

recGblGetGraphicDouble(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by theget_graphic_double record support routine to obtain
graphics values for fields that it doesn’t know how to set.

Get Control Double recGblGetControlDouble(
struct dbAddr *paddr,
struct dbr_ctrlDouble *pcd);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 101

Chapter 8: Record Support
Global Record Support Routines

l

UE)
This routine can be used by theget_control_double record support routine to obtain
control values for fields that it doesn’t know how to set.

Get Alarm Double recGblGetAlarmDouble(
struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by theget_alarm_double record support routine to obtain contro
values for fields that it doesn’t know how to set.

Get Precision recGblGetPrec(
struct dbAddr *paddr,
long *pprecision);

This routine can be used by theget_precision record support routine to obtain the
precision for fields that it doesn’t know how to set the precision.

Get Time Stamp recGblGetTimeStamp(void *precord)

This routine gets the current time stamp and puts it in the record

Forward link recGblFwdLink(
void *precord);

This routine can be used by process to request processing of forward links.

Initialize Constant
Link

 int recGblInitConstantLink(
struct link *plink,
short dbfType,
void *pdest);

Initialize a constant link. This routine is usually called byinit_record (or by associated
device support) to initialize the field associated with a constant link. It returns(FALSE, TR
if it (did not, did) modify the destination.
102 EPICS IOC Application Developer’s Guide

Chapter 9: Device Support
er of
etails
ithout

lk to
hus
record

CII

the

onous.
or I/O.
GPIB
e to

ronous

onous
s then
guess
such a

onous
ices.
otifies
rites
 Overview

In addition to a record support module, each record type can have an arbitrary numb
device support modules. The purpose of device support is to hide hardware specific d
from record processing routines. Thus support can be developed for a new device w
changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to ta
the hardware directly or how to call a device driver which interfaces to the hardware. T
device support routines are the interface between hardware specific fields in a database
and device drivers or the hardware itself.

Database common contains two device related fields:

• dtyp: Device Type.

• dset: Address of Device Support Entry Table.

The field dtyp contains the index of the menu choice as defined by the device AS
definitions.iocInit uses this field and the device support structures defined indevSup.h to
initialize the fielddset . Thus record support can locate its associated device support via
dset field.

Device support modules can be divided into two basic classes: synchronous and asynchr
Synchronous device support is used for hardware that can be accessed without delays f
Many register based devices are synchronous devices. Other devices, for example all
devices, can only be accessed via I/O requests that may take large amounts of tim
complete. Such devices must have associated asynchronous device support. Asynch
device support makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchr
device support is appropriate. If a device causes delays of greater than 100 microsecond
asynchronous device support is appropriate. If the delay is between these values your
about what to do is as good as mine. Perhaps you should ask the hardware designer why
device was created.

If a device takes a long time to accept requests there is another option than asynchr
device support. A driver can be created that periodically polls all its attached input dev
The device support just returns the latest polled value. For outputs, device support just n
the driver that a new value must be written. the driver, during one of its polling phases, w
the new value. The EPICS Allen Bradley device/driver support is a good example.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 103

Chapter 9: Device Support
Example Synchronous Device Support Module
 Example Synchronous Device Support Module

/* Create the dset for devAiSoft */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

}devAiSoft={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

static long init_record(void *precord)
{

aiRecord *pai = (aiRecord *)precord;
long status;

/* ai.inp must be a CONSTANT, PV_LINK, DB_LINK or CA_LINK*/
switch (pai->inp.type) {

case (CONSTANT) :
recGblInitConstantLink(&pai->inp,

DBF_DOUBLE,&pai->val);
break;

case (PV_LINK) :
case (DB_LINK) :
case (CA_LINK) :

break;
default :

recGblRecordError(S_db_badField, (void *)pai,
”devAiSoft (init_record) Illegal INP field”);

return(S_db_badField);
}
/* Make sure record processing routine does not perform any

conversion*/
pai->linr=0;
return(0);

}

static long read_ai(void *precord)
{

aiRecord*pai =(aiRecord *)precord;
104 EPICS IOC Application Developer’s Guide

Chapter 9: Device Support
Example Asynchronous Device Support Module

e rest

the

port

rns a
ord

tion!)

.

alled
long status;

status=dbGetGetLink(&(pai->inp.value.db_link),
(void *)pai,DBR_DOUBLE,&(pai->val),0,1);

if(status) return(status);
return(2); /*don’t convert*/

}

The example isdevAiSoft , which supports soft analog inputs. TheINP field can be a
constant or a database link or a channel access link. Only two routines are provided (th
are declaredNULL). The init_record routine first checks that the link type is valid. If the
link is a constant it initializesVAL If the link is a Process Variable link it callsdbCaGetLink
to turn it into a Channel Access link. Theread_ai routine obtains an input value if the link is
a database or Channel Access link, otherwise it doesn’t have to do anything.

 Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does
following sequence of operations:

1. When first calledpact is FALSE. It arranges for a callback (myCallback) routine to
be called after a number of seconds specified by theVAL field. callbackRequest is
an EPICS supplied routine. The watchdog timer routines are supplied by vxWorks.

2. It prints a message stating that processing has started, setspact TRUE , and returns. The
record processing routine returns without completing processing.

3. When the specified time elapsesmyCallback is called. It locks the record, calls
process , and unlocks the record. It calls the process entry of the record sup
module, which it locates via therset field in dbCommon, directly rather than
dbProcess . dbProcess would not callprocess becausepact is TRUE.

4. Whenprocess executes, it again callsread_ai . This timepact is TRUE.

5. read_ai prints a message stating that record processing is complete and retu
status of 2. Normally a value of 0 would be returned. The value 2 tells the rec
support routine not to attempt any conversions. This is a convention (a bad conven
used by the analog input record.

6. Whenread_ai returns the record processing routine completes record processing

At this point the record has been completely processed. The next time process is c
everything starts all over.

/* Create the dset for devAiTestAsyn */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiTestAsyn={
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 105

Chapter 9: Device Support
Example Asynchronous Device Support Module
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/
typedef struct myCallback {

CALLBACK callback;
sruct dbCommon *precord;
WDOG_ID wd_id;

}myCallback;

static void myCallback(CALLBACK *pcallback)
{
 dbCommon *precord;
 struct rset*prset;

callbackGetUser(precord,pcallback);
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process)(precord);
dbScanUnlock(precord);

}

static long init_record(void *precord)
{
 aiRecord *pai = (aiRecord *)precord;
 myCallback *pcallback;

 /* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

pcallback = (myCallback *)(calloc(1,sizeof(myCallback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback, &pcallback->callback);
callbackSetUser(precord, &pcallback->callback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

”devAiTestAsyn (init_record) Illegal INP field”);
return(S_db_badField);

}
return(0);

}

106 EPICS IOC Application Developer’s Guide

Chapter 9: Device Support
Device Support Routines

to a

s not
static long read_ai(void *precord)
{

aiRecord *pai = (aiRecord *)precord;;
struct callback *pcallback=(struct callback *)(pai->dpvt);
int wait_time;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

if(pai->pact) {
printf(”%s Completed\n”,pai->name);
return(2); /* don‘t convert*/

} else {
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio,&pcallback->callback);
printf(”%s Starting asynchronous processing\n”,

pai->name);
wdStart(pcallback->wd_id,wait_time,

(FUNCPTR)callbackRequest,
(int)&pcallback->callback);

pai->pact = TRUE;
return(0);

}
default :

if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat!=SOFT_ALARM) {

recGblRecordError(S_db_badField, (void *)pai,
”devAiTestAsyn (read_ai) Illegal INP field”);

}
}

}
return(0);

}

 Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply
specific record type must be declaredNULL.

Generate Device
Report

report(
FILE fp, /* file pointer*/
int interest);

This routine is responsible for reporting all I/O cards it has found. Ifinterest is (0,1) then
generate a (short, long) report. If a device support module is using a driver, it normally doe
have to implement this routine because the driver generates the report.

Initialize Record
Processing

init(
int after);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 107

Chapter 9: Device Support
Device Support Routines

is
er all

ter on

not
calls
This routine is called twice at IOC initialization time. Any action is device specific. Th
routine is called twice: once before any database records are initialized and once aft
records are initialized but before the scan tasks are started.after has the value (0,1) (before,
after) record initialization.

Initialize Specific
Record

init_record(
void *precord); /* addr of record*/

The record supportinit_record routine calls this routine.

Get I/O Interrupt
Information

get_ioint_info(
int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan task. Ifcmd is (0,1) then this routine is being called
when the associated record is being (placed in, taken out of) an I/O scan list. See the chap
scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is
described in this document because, hopefully, it will go away in the near future. When it
this routine the arguments have completely different meanings.

Other Device
Support Routines

All other device support routines are record type specific.
108 EPICS IOC Application Developer’s Guide

Chapter 10: Driver Support
ware.
pport
ange
e all
pport

need

d for
xcept

rized
net,

.

is a

ule,
r the
ion is

d to
ivers
ssary
driver
puts,
 Overview

It is not necessary to create a driver support module in order to interface EPICS to hard
For simple hardware device support is sufficient. At the present time most hardware su
has both. The reason for this is historical. Before EPICS there was GTACS. During the ch
from GTACS to EPICS, record support was changed drastically. In order to preserv
existing hardware support the GTACS drivers were used without change. The device su
layer was created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do I
driver support and when don’t I? Lets give a few reasons why drivers should be created.

• The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provide
accessing the subnet. There is no reason to make the driver aware of EPICS e
possibly for issuing error messages.

• The hardware is complicated. In this case supplying driver support helps modula
the software. The Allen Bradley driver, which is also an example of supporting a sub
is a good example.

• An existing driver, maintained by others, is available. I don’t know of any examples

• The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver
good example. It is used by other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support mod
which can be layered on top of an existing driver, and provide a database definition fo
driver. The driver support module is described in the next section. The database definit
described in chapter “Database Definition”.

 Device Drivers

Device drivers are modules that interface directly with the hardware. They are provide
isolate device support routines from details of how to interface to the hardware. Device dr
have no knowledge of the internals of database records. Thus there is no nece
correspondence between record types and device drivers. For example the Allen Bradley
provides support for many different types of signals including analog inputs, analog out
binary inputs, and binary outputs.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 109

Chapter 10: Driver Support
Device Drivers

port
ost

by a

ule

:

y is:

a
is a
In general only device support routines know how to call device drivers. Since device sup
varies widely from device to device, the set of routines provided by a device driver is alm
completely driver dependent. The only requirement is that routinesreport andinit must be
provided. Device support routines must, of course, know what routines are provided
driver.

File drvSup.h describes the format of a driver support entry table. The driver support mod
must supply a driver entry table. An example definition is:

LOCAL long report();
LOCAL long init();
struct {

 long number;
 DRVSUPFUN report;
 DRVSUPFUN init;

} drvAb={
 2,
 report,
 init

};

The above example is for the Allen Bradley driver. It has an associated ascii definition of

driver(drvAb)

Thus it is seen that the driver support module should supply two EPICS callable routines:int
andreport .

init This routine, which has no arguments, is called byiocInit . The driver is expected to look
for and initialize the hardware it supports. As an example the init routine for Allen Bradle

LOCAL long init()
{

 return(ab_driver_init());
}

report The report routine is called by thedbior , an IOC test routine. It is responsible for producing
report describing the hardware it found at init time. It is passed one argument, level, which
hint about how much information to display. An example, taken from Allen Bradley, is:

LOCAL long report(int level)
{

 return(ab_io_report(level));
}

Guidelines for level are as follows:

Level=0 Display a one line summary for each device
Level=1 Display more information
Level=2 Display a lot of information. It is even permissible to

prompt for what is wanted.

Hardware
Configuration

Hardware configuration includes the following:

• VME/VXI address space

• VME Interrupt Vectors and levels
110 EPICS IOC Application Developer’s Guide

Chapter 10: Driver Support
Device Drivers

tion
This

for

sed
usly.
sses
re

imal

nd
uted.
file.

.

• Device Specific Information

The information contained in hardware links supplies some but not all configura
information. In particular it does not define the VME/VXI addresses and interrupt vectors.
additional information is what is meant by hardware configuration in this chapter.

The problem of defining hardware configuration information is an unsolved problem
EPICS. At one time configuration information was defined inmodule_types .h Many
existing device/driver support modules still uses this method. It shouldNOT be used for any
new support for the following reasons:

• There is no way to manage this file for the entire EPICS community.

• It does not allow arbitrary configuration information.

• It is hard for users to determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support u
in each IOC makes the configuration problem much more manageable than previo
Previously if you wanted to support a new VME modules it was necessary to pick addre
that nothing inmodule_types .h was using. Now you only have to check modules you a
actually using.

Since there are no EPICS defined rules for hardware configuration, the following min
guidelines should be used:

• Never use #define to specify things like VME addresses. Instead use variables a
assign default values. Allow the default values to be changed before iocInit is exec
The best way is to supply a global routine that can be invoked from the IOC startup
Note that all arguments to such routines should be one of the following:

int
char *
double

• Call the routines described in chapter “Device Support Library” whenever possible
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 111

Chapter 10: Driver Support
Device Drivers
112 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
red in
ss and
se files.
ribed in

plexity
ed
be
it can be

es must

static
tabase

PICS

ase
he
tabase

rovide
 Overview

An IOC database is created on a Unix system via a Database Configuration Tool and sto
a Unix file. EPICS provides two sets of database access routines: Static Database Acce
Runtime Database Access. Static database access can be used on Unix or IOC databa
Runtime database requires an initialized IOC databases. Static database access is desc
this chapter and runtime database access in the next chapter.

Static database access provides a simplified interface to a database, i.e. much of the com
is hidden.DBF_MENUand DBF_DEVICE fields are accessed via a common type call
DCT_MENU. A set of routines are provided to simplify access to link fields. All fields can
accessed as character strings. This interface is called static database access because
used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devic
be read viadbReadDatabase or dbReadDatabaseFP . These routines, which are also
used to load record instances, can be called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the
database access interface. An IOC database is created on a Unix system via a da
configuration tool and stored in a Unix file with a file extension of ”.db”. Three routines
(dbReadDatabase, dbReadDatabaseFP and dbWriteRecord) access a Unix
database file. These routines read/write a database file to/from a memory resident E
database. All other access routines manipulate the memory resident database.

An include filedbStaticLib.h contains all the definitions needed to use the static datab
access library. Two structures (DBBASEand DBENTRY) are used to access a database. T
fields in these structures should not be accessed directly. They are used by the static da
access library to keep state information for the caller.

 Definitions

DBBASE Multiple memory resident databases can be accessed simultaneously. The user must p
definitions in the form:

DBBASE *pdbbase;

DBENTRY A typical declaration for a database entry structure is:
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 113

Chapter 11: Static Database Access
Allocating and Freeing DBBASE

y

many

s a new
be an
ss field

es

are

d
ion

e next
DBENTRY *pdbentry;
pdbentry=dbAllocEntry(pdbbase);

Most static access to a database is via aDBENTRYstructure. As manyDBENTRYsas desired
can be allocated.

The user should NEVER access the fields ofDBENTRYdirectly. They are meant to be used b
the static database access library.

Most static access routines accept an argument which contains the address of aDBENTRY.
Each routine uses this structure to locate the information it needs and gives values to as
fields in this structure as possible. All other fields are set toNULL.

Field Types Each database field has a type as defined in the next chapter. For static database acces
and simpler set of field types are defined. In addition, at runtime, a database field can
array. With static database access, however, all fields are scalars. Static database acce
types are called DCT field types.

The DCT field types are:

• DCT_STRING: Character string.

• DCT_INTEGER : Integer value

• DCT_REAL : Floating point number

• DCT_MENU : A set of choice strings

• DCT_MENUFORM : A set of choice strings with associated form.

• DCT_INLINK : Input Link

• DCT_OUTLINK : Output Link

• DCT_FWDLINK : Forward Link

• DCT_NOACCESS: A private field for use by record access routines

A DCT_STRINGfield contains the address of aNULL terminated string. The field types
DCT_INTEGERandDCT_REALare used for numeric fields. A field that has any of these typ
can be accessed via thedbGetString , dbPutString , dbVerify , and dbGetRange
routines.

The field typeDCT_MENUhas an associated set of strings defining the choices. Routines
available for accessing menu fields. A menu field can also be accessed via thedbGetString ,
dbPutString , dbVerify , anddbGetRange routines.

The field typeDCT_MENUFORMis like DCT_MENUbut in addition the field has an associate
link field. The information for the link field can be entered via a set of form manipulat
fields.

DCT_INLINK (input), DCT_OUTLINK(output), andDCT_FWDLINK(forward) specify that
the field is a link, which has an associated set of static access routines described in th
subsection. A field that has any of these types can also be accessed via thedbGetString ,
dbPutString , dbVerify , anddbGetRange routines.

 Allocating and Freeing DBBASE

dbAllocBase DBBASE *dbAllocBase(void);
114 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
DBENTRY Routines

e to

es

each
call

e

o

This routine allocates and initializes a DBBASE structure. It does not return if it is unabl
allocate storage.

dbAllocBase allocates and initializes a DBBASE structure. Normally an application do
not need to call dbAllocBase because a call to dbReadDatabase or
dbReadDatabaseFP automatically calls this routine ifpdbbase is null. Thus the user only
has to supply code like the following:

DBBASE *pdbbase=0;
...
status = dbReadDatabase(&pdbbase,"sample.db",

"<path>","<macro substitutions>");

The static database access library allows applications to work with multiple databases,
referenced via a different (DBBASE *) pointer. Such applications may find it necessary to
dbAllocBase directly.

dbAllocBase does not return if it is unable to allocate storage.

dbFreeBase void dbFreeBase(DBBASE *pdbbase);

dbFreeBase frees the entire database reference bypdbbase including the DBBASE
structure itself.

 DBENTRY Routines

Alloc/Free
DBENTRY

DBENTRY *dbAllocEntry(DBBASE *pdbbase);
void dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and freeDBENTRYstructures. The user can allocate and fre
DBENTRY structures as necessary. EachDBENTRY is, however, tied to a particular database.

dbAllocEntry and dbFreeEntry act as a pair, i.e. the user callsdbAllocEntry to
create a new DBENTRY and callsdbFreeEntry when done.

dbInitEntry
dbFinishEntry

void dbInitEntry(DBBASE *pdbbase,DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

The routinesdbInitEntry and dbFinishEntry are provided in case the user wants t
allocate aDBENTRYstructure on the stack. Note that the caller MUST calldbFinishEntry
before returning from the routine that callsdbInitEntry . An example of how to use these
routines is:

int xxx(DBBASE *pdbbase)
{

DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
...
dbInitEntry(pdbbase,pdbentry);
...
dbFinishEntry(pdbentry);

}

EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 115

Chapter 11: Static Database Access
Read and Write Database

, via

ld

e

"FILE
with

in

ne
.

dbCopyEntry
dbCopyEntry
Contents

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);
void dbCopyEntryContents(DBENTRY *pfrom,DBENTRY *pto);

The routine dbCopyEntry allocates a new entry, via a call todbAllocEntry , copies the
information from the original entry, and returns the result. The caller must free the entry
dbFreeEntry when finished with the DBENTRY.

The routinedbCopyEntryContents copies the contents of pfrom to pto. Code shou
never perform structure copies.

 Read and Write Database

Read Database File long dbReadDatabase(DBBASE **ppdbbase,const char *filename,
char *path, char *substitutions);

long dbReadDatabaseFP(DBBASE **ppdbbase,FILE *fp,
char *path, char *substitutions);

long dbPath(DBBASE *pdbbase,const char *path);
long dbAddPath(DBBASE *pdbbase,const char *path);

dbReadDatabase and dbReadDatabaseFP both read a file containing databas
definitions as described in chapter “Database Definitions”. If *ppdbbase is NULL,
dbAllocBase is automatically invoked and the return address assigned to *pdbbase . The
only difference between the two routines is that one accepts a file name and the other a
*". Any combination of these routines can be called multiple times. Each adds definitions
the rules described in chapter “Database Definitions”.

The routinesdbPath and dbAddPath specify paths for use by include statements
database definition files. These are not normally called by user code.

Write Database
Definitons

long dbWriteMenu(DBBASE *pdbbase,char *filename,
char *menuName);

long dbWriteMenuFP(DBBASE *pdbbase,FILE *fp,char *menuName);
long dbWriteRecordType(DBBASE *pdbbase,char *filename,

char *recordTypeName);
long dbWriteRecordTypeFP(DBBASE *pdbbase,FILE *fp,

char *recordTypeName);
long dbWriteDevice(DBBASE *pdbbase,char *filename);
long dbWriteDeviceFP(DBBASE *pdbbase,FILE *fp)
long dbWriteDriver(DBBASE *pdbbase,char *filename);
long dbWriteDriverFP(DBBASE *pdbbase,FILE *fp);
long dbWriteBreaktable(DBBASE *pdbbase,

const char *filename);
long dbWriteBreaktableFP(DBBASE *pdbbase,FILE *fp);

Each of these routines writes files in the same format accepted bydbReadDatabase and
dbReadDatabaseFP . Two versions of each type are provided. The only difference is that o
accepts a filename and the other a "FILE *". Thus only one of each type has to be described

dbWriteMenu writes the description of the specified menu or, ifmenuNameis NULL, the
descriptions of all menus.
116 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Record Types

if

ne
.

e are

ord
ess

This
dbWriteRecordType writes the description of the specified record type or,
recordTypeName is NULL, the descriptions of all record types.

dbWriteDevice writes the description of all devices to stdout.

dbWriteDriver writes the description of all drivers to stdout.

Write Record
Instances

long dbWriteRecord(DBBASE *pdbbase,char * file,
char *precordTypeName,int level);

long dbWriteRecordFP(DBBASE *pdbbase,FILE *fp,
char *precordTypeName,int level);

Each of these routines writes files in the same format accepted bydbReadDatabase and
dbReadDatabaseFP . Two versions of each type are provided. The only difference is that o
accepts a filename and the other a “FILE *”. Thus only one of each type has to be described

dbWriteRecord writes record instances. IfprecordTypeName is NULL, then the record
instances for all record types are written, otherwise only the records for the specified typ
written. level has the following meaning:

• 0 - Write only prompt fields that are different than the default value.

• 1 - Write only the fields which are prompt fields.

• 2 - Write the values of all fields.

 Manipulating Record Types

Get Number of
Record Types

int dbGetNRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

Locate Record Type long dbFindRecordType(DBENTRY *pdbentry,
char *recordTypeName);

long dbFirstRecordType(DBENTRY *pdbentry);
long dbNextRecordType(DBENTRY *pdbentry);

dbFindRecordType locates a particular record type.dbFirstRecordType locates the
first, in alphabetical order, record type. Given that DBENTRY points to a particular rec
type, dbNextRecordType locates the next record type. Each routine returns 0 for succ
and a non zero status value for failure. A typical code segment using these routines is:

status = dbFirstRecordType(pdbentry);
while(!status) {

/*Do something*/
status = dbNextRecordType(pdbentry)
}

Get Record Type
Name

char *dbGetRecordTypeName(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references.
routine should only be called after a successful call todbFindRecordType ,
dbFirstRecordType , or dbNextRecordType . It returns NULL if DBENTRY does not
point to a record description.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 117

Chapter 11: Static Database Access
Manipulating Field Descriptions

e, i.e.

.

, then

for a

rns

. It

the

e is
ve that

,the
d by
 Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references a record typ
that dbFindRecordType , dbFirstRecordType , or dbNextRecordType has returned
success or that a record instance has been successfully located.

Get Number of
Fields

int dbGetNFields(DBENTRY *pdbentry,int dctonly);

Returns the number of fields for the record instance that DBENTRY currently references

Locate Field long dbFirstField(DBENTRY *pdbentry,int dctonly);
long dbNextField(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success
DBENTRY references that field description.

Get Field Type int dbGetFieldType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section on page 114,
description of the field types.

Get Field Name char *dbGetFieldName(DBENTRY *pdbentry);

This routine returns the name of the field that DBENTRY currently references. It retu
NULL if DBENTRY does not point to a field.

Get Default Value char *dbGetDefault(DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references
returns NULL if DBENTRY does not point to a field or if the default value is NULL.

Get Field Prompt char *dbGetPrompt(DBENTRY *pdbentry);
int dbGetPromptGroup(DBENTRY *pdbentry);

The dbGetPrompt routine returns the character string prompt value, which describes
field. dbGetPromptGroup returns the field group as described in guigroup.h.

 Manipulating Record Attributes

A record attribute is a "psuedo" field definition attached to a record type. If a attribute valu
assigned to a psuedo field name then all record instances of that record type appear to ha
field with the defined value. All attribute fields are DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to
record type name. VERS is initialized to the value "none specified" but can be change
record support.

dbPutRecord
Attribute

long dbPutRecordAttribute(DBENTRY *pdbentry,
 char *name,char*value)

This creates or modifies attributename with value .
118 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Record Instances

e that

ntly

ss, then

w

it

a
urns

d

rd.
dbGetRecord
Attribute

long dbGetRecordAttribute(DBENTRY *pdbentry,char *name);

 Manipulating Record Instances

With the exception of dbFindRecord, each of the routines described in this section requir
DBENTRY references a valid record type, i.e. thatdbFindRecordType ,
dbFirstRecordType , ordbNextRecordType has been called and returned success.

Get Number of
Records

int dbGetNRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY curre
references.

Locate Record long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry);
long dbNextRecord(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns succe
DBENTRY references the record.dbFindRecord can be called without DBENTRY
referencing a valid record type.dbFirstRecord only works if DBENTRY references a
record type. ThedbDumpRecords example given at the beginning of this chapter shows ho
these routines can be used.

dbFindRecord also callsdbFindField if the record name includes a field name, i.e.
ends in “.XXX”. The routinedbFoundField returns (TRUE, FALSE) if the field (was, was
not) found. If it was not found, thendbFindField must be called before individual fields can
be used.

Get Record Name char *dbGetRecordName(DBENTRY *pdbentry);

This routine only works properly if called afterdbFindRecord , dbFirstRecord , or
dbNextRecord has returned success.

Create/Delete/Free
Record

long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
long dbDeleteRecord(DBENTRY *pdbentry);
long dbFreeRecords(DBBASE *pdbbase);

dbCreateRecord , which assumes thatDBENTRYreferences a valid record type, creates
new record instance and initializes it as specified by the record description. If it ret
success, thenDBENTRYreferences the record just created.dbDeleteRecord deletes a
single record instance/.dbFreeRecords deletes all record instances.

Copy Record long dbCopyRecord(DBENTRY *pdbentry, char *newRecordName
int overWriteOK)

This routine copies the record instance currently referenced byDBENTRY. Thus it creates and
new record with the namenewRecordName that is of the same type as the original recor
and copies the original records field values to the new record. IfnewRecordName already
exists andoverWriteOK is true, then the originalnewRecordName is deleted and
recreated. IfdbCopyRecord completes successfully, DBENTRY references the new reco
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 119

Chapter 11: Static Database Access
Manipulating Menu Fields

.

types
r

, i.e.
ious

s

Rename Record long dbRenameRecord(DBENTRY *pdbentry, char *newname)

This routine renames the record instance currently referenced byDBENTRY. If
dbRenameRecord completes successfully, DBENTRY references the renamed record.

Record Visibility These routines are for use by graphical configuration tools.

long dbVisibleRecord(DBENTRY *pdbentry);
long dbInvisibleRecord(DBENTRY *pdbentry);
int dbIsVisibleRecord(DBENTRY *pdbentry);

dbVisibleRecord sets a record to be visible.dbInvisibleRecord sets a record
invisible.dbIsVisibleRecord returns TRUE if a record is visible and FALSE otherwise

Find Field long dbFindField(DBENTRY *pdbentry,char *pfieldName);
int dbFoundField(DBENTRY *pdbentry);

Given that a record instance has been located,dbFindField finds the specified field. If it
returns success, thenDBENTRYreferences that field.dbFoundField returns (FALSE,
TRUE) if (no field instance is currently available, a field instance is available).

Get/Put Field Values char *dbGetString(DBENTRY *pdbentry);
long dbPutString(DBENTRY *pdbentry,char *pstring);
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange(DBENTRY *pdbentry);
int dbIsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field
exceptDCT_NOACCESSbut shouldNOT be used to prompt the user for information fo
DCT_MENU, DCT_MENUFORM, or DCT_LINK_xxx fields. dbVerify returns (NULL, a
message) if the string is (valid, invalid). Please note that the strings returned are volatile
the next call to a routines that returns a string will overwrite the value returned by a prev
call. Thus it is the caller’s responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFORMand DCT_LINK_xxx fields can be manipulated via routine
described in the following sections. If, howeverdbGetString anddbPutString are used,
they do work correctly. For these field typesdbGetString anddbPutString are intended
to be used only for creating and restoring versions of a database.

 Manipulating Menu Fields

These routines should only be used forDCT_MENUand DCT_MENUFORMfields. Thus they
should only be called ifdbFindField , dbFirstField , or dbNextField has returned
success and the field type isDCT_MENU or DCT_MENUFORM.

Get Number of
Menu Choices

int dbGetNMenuChoices(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

Get Menu Choice char **dbGetMenuChoices(DBENTRY *pdbentry);
120 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Link Fields

enu

ies

x

This

ld in
e for

vice
ations

d.

ed

rocess
This routine returns the address of an array of pointers to strings which contain the m
choices.

Get/Put Menu int dbGetMenuIndex(DBENTRY *pdbentry);
long dbPutMenuIndex(DBENTRY *pdbentry,int index);
char *dbGetMenuStringFromIndex(DBENTRY *pdbentry,int index);
int dbGetMenuIndexFromString(DBENTRY *pdbentry,

char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGetMenuIndex returns the index of the menu choice for the current field, i.e. it specif
which choice to which the field is currently set.dbPutMenuIndex sets the field to the
choice specified by the index.

dbGetMenuStringFromIndex returns the string value for a menu index. If the inde
value is invalid NULL is returned.dbGetMenuIndexFromString returns the index for
the given string. If the string is not a valid choice a -1 is returned.

Locate Menu dbMenu *dbFindMenu(DBBASE *pdbbase,char *name);

dbFindMenu is most useful for runtime use but is a static database access routine.
routine just finds a menu with the given name.

 Manipulating Link Fields

Link Types Links are the most complicated types of fields. A link can be a constant, reference a fie
another record, or can refer to a hardware device. Two additional complications aris
hardware links. The first is that fieldDTYP, which is a menu field, determines if theINP or
OUTfield is a device link. The second is that the information that must be specified for a de
link is bus dependent. In order to shelter database configuration tools from these complic
the following is done for static database access.

• Static database access will treatDTYP as aDCT_MENUFORM field.

• The information for the link field related to theDCT_MENUFORMcan be entered via a
set of form manipulation routines associated with theDCT_MENUFORMfield. Thus the
link information can be entered via theDTYP field rather than the link field.

• The Form routines described in the next section can also be used with any link fiel

Each link is one of the following types:

• DCT_LINK_CONSTANT : Constant value.

• DCT_LINK_PV : A process variable link.

• DCT_LINK_FORM : A link that can only be processed via the form routines describ
in the next chapter.

Database configuration tools can change any link between being a constant and a p
variable link. Routines are provided to accomplish these tasks.

The routinesdbGetString , dbPutString , anddbVerify can be used for link fields but
the form routines can be used to provide a friendlier user interface.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 121

Chapter 11: Static Database Access
Manipulating MenuForm Fields

e

y

mber
r of

ing

error

is
All Link Fields int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

These are routines for manipulatingDCT_xxxLINK fields. dbGetNLinks and
dbGetLinkField are used to walk through all the link fields of a record.dbGetLinkType
returns one of the values:DCT_LINK_CONSTANT, DCT_LINK_PV, DCT_LINK_FORM, or the
value -1 if it is called for an illegal field.

Constant and
Process Variable
Links

long dbCvtLinkToConstant(DBENTRY *pdbentry);
long dbCvtLinkToPvlink(DBENTRY *pdbentry);

These routines should be used for modifyingDCT_LINK_CONSTANTor DCT_LINK_PV
links. They should not be used forDCT_LINK_FORMlinks, which should be processed via th
associatedDCT_MENUFORM field described above.

 Manipulating MenuForm Fields

These routines are used with aDCT_MENUFORMfield (a DTYP field) to manipulate the
associatedDCT_INLINK or DCT_OUTLINK field. They can also be used on an
DCT_INLINK , DCT_OUTLINK, orDCT_FWDLINK field.

Alloc/Free Form int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentry)

dbAllocForm allocates storage needed to manipulate forms. The return value is the nu
of elements in the form. If the current field value contains a macro definition, the numbe
lines returned is 0.

Get/Put Form char **dbGetFormPrompt(DBENTRY *pdbentry)
char **dbGetFormValue(DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)

dbGetFormPrompt returns a pointer to an array of pointers to character strings specify
the prompt string.dbGetFormValue returns the current values.dbPutForm , which can use
the same array of values returned bydbGetForm , sets new values.

Verify Form char **dbVerifyForm(DBENTRY *pdbentry,char **value)

dbVerifyForm can be called to verify user input. It returnsNULL if no errors are present. If
errors are present, it returns a pointer to an array of character strings containing
messages. Lines in error have a message and correct lines have aNULL string.

Get Related Field char *dbGetRelatedField(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it
called for any other type of field it returns NULL.

Example The following is code showing use of these routines:

char **value;
char **prompt;
122 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Find Breakpoint Table

y the
char **error;
int n;

...
n = dbAllocForm(pdbentry);
if(n<=0) {<Error>}
prompt = dbGetFormPrompt(pdbentry);
value = dbGetFormValue(pdbentry);
for(i=0; i<n; i++) {

printf(”%s (%s) : \n”,prompt[i],value[i]);
/*The follwing accepts input from stdin*/
scanf(”%s”,value[i]);

}
error = dbVerifyForm(pdbentry,value);
if(error) {

for(i=0; i<n; i++) {
if(error[i]) printf(”Error: %s (%s) %s\n”, prompt[i],

value[i],error[i]);
}

}else {
dbPutForm(pdbentry,value)

}
dbFreeForm(pdbentry);

All value strings areMAX_STRING_SIZE in length.

A set of form calls for a particularDBENTRY, MUST begin with a call todbAllocForm and
end with a call to dbFreeForm . The values returned bydbGetFormPrompt ,
dbGetFormValue , anddbVerifyForm are valid only between the calls todbAllocForm
anddbFreeForm .

 Find Breakpoint Table

brkTable *dbFindBrkTable(DBBASE *pdbbase,char *name)

This routine returns the address of the specified breakpoint table. It is normally used b
runtime breakpoint conversion routines so will not be discussed further.

 Dump Routines

void dbDumpPath(DBBASE *pdbbase)
void dbDumpRecord(DBBASE *pdbbase,char *precordTypeName,

int level);
void dbDumpMenu(DBBASE *pdbbase,char *menuName);
void dbDumpRecordType(DBBASE *pdbbase,char *recordTypeName);
void dbDumpFldDes(DBBASE *pdbbase,char *recordTypeName,

char *fname);
void dbDumpDevice(DBBASE *pdbbase,char *recordTypeName);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 123

Chapter 11: Static Database Access
Examples

e

on an

s to
void dbDumpDriver(DBBASE *pdbbase);
void dbDumpBreaktable(DBBASE *pdbbase,char *name);
void dbPvdDump(DBBASE *pdbbase,int verbose);
void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

These routines are used to dump information about the database.dbDumpRecord ,
dbDumpMenu, and dbDumpDriver just call the corresponding dbWritexxxFP routin
specifying stdout for the file.dbDumpRecDes, dbDumpFldDes , anddbDumpDevice give
internal information useful on an ioc. Note that all of these commands can be executed
ioc. Just specify pdbbase as the first argument.

 Examples

Expand Include This example is like thedbExpand utility, except that it doesn’t allow path or macro
substitution options, It reads a set of database definition files and writes all definition
stdout. All include statements appearing in the input files are expanded.

/* dbExpand.c */
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <epicsPrint.h>
#include <dbStaticLib.h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)
{

long status;
int i;
int arg;

if(argc<2) {
printf("usage: expandInclude file1.db file2.db...\n");
exit(0);

 }
for(i=1; i<argc; i++) {

status = dbReadDatabase(&pdbbase,argv[i],NULL,NULL);
if(!status) continue;
fprintf(stderr,"For input file %s",argv[i]);
errMessage(status,"from dbReadDatabase");

}
dbWriteMenuFP(pdbbase,stdout,0);
dbWriteRecordTypeFP(pdbbase,stdout,0);
dbWriteDeviceFP(pdbbase.stdout);
dbWriteDriverFP(pdbbase.stdout);
dbWriteRecordFP(pdbbase,stdout,0,0);
return(0);
124 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Examples

ample
}

dbDumpRecords NOTE: This example is similar but not identical to the actualdbDumpRecords routine.

The following example demonstrates how to use the database access routines. The ex
shows how to locate each record and display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;
long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”No record descriptions\n”);return;}
while(!status) {

printf(”record type: %s”,dbGetRecordTypeName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n”);
else printf(”\n Record:%s\n”,dbGetRecordName(pdbentry));
while(!status) {

status = dbFirstField(pdbentry,TRUE);
if(status) printf(” No Fields\n”);
while(!status) {

printf(” %s:%s”,dbGetFieldName(pdbentry),
dbGetString(pdbentry));

status=dbNextField(pdbentry,TRUE);
}
status = dbNextRecord(pdbentry);

}
status = dbNextRecordType(pdbentry);

}
printf(”End of all Records\n”);
dbFreeEntry(pdbentry);

}

EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 125

Chapter 11: Static Database Access
Examples
126 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
se.

t are

us by

t to

is

el
 Overview

This chapter describes routines for manipulating and accessing an initialized IOC databa

This chapter is divided into the following sections:

• Database related include files. All of interest are listed and those of general interes
discussed briefly.

• Runtime database access overview.

• Description of each runtime database access routine.

• Runtime modification of link fields.

• Lock Set Routines

• Database to Channel Access Routines

• Old Database Access. This is the interface still used by Channel Access and th
Channel Access clients.

 Database Include Files

Directorybase/include contains a number of database related include files. Of interes
this chapter are:

• dbDefs.h: Miscellaneous database related definitions

• dbFldTypes.h: Field type definitions

• dbAccess.h: Runtime database access definitions.

• link.h : Definitions for link fields.

dbDefs.h This file contains a number of database related definitions. The most important are:

• PVNAME_SZ: The number of characters allowed in the record name.

• FLDNAME_SZ : The number of characters formerly allowed in a field name. Th
restriction no longer applies in any base software exceptdbCaLink .c. THIS SHOULD
BE FIXED. It is unknown what effect removing this restriction will have on Chann
Access Clients.

• MAX_STRING_SIZE : The maximum string size for string fields or menu choices.

• DB_MAX_CHOICES : The maximum number of choices for a choice field.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 127

Chapter 12: Runtime Database Access
Database Include Files

ute.
many

ation.

f
s
es locate

field
e

th a
n be

ected
y

dbFldTypes.h This file defines the possible field types. A field’s type is perhaps its most important attrib
Changing the possible field types is a fundamental change to the IOC software, because
IOC software components are aware of the field types.

The field types are:

• DBF_STRING: ASCII character string

• DBF_CHAR: Signed character

• DBF_UCHAR: Unsigned character

• DBF_SHORT: Short integer

• DBF_USHORT: Unsigned short integer

• DBF_LONG: Long integer

• DBF_ULONG: Unsigned long integer

• DBF_FLOAT : Floating point number

• DBF_DOUBLE: Double precision float

• DBF_ENUM: An enumerated field

• DBF_MENU: A menu choice field

• DBF_DEVICE : A device choice field

• DBF_INLINK : Input Link

• DBF_OUTLINK : Output Link

• DBF_FWDLINK : Forward Link

• DBF_NOACCESS: A private field for use by record access routines

A field of typeDBF_STRING, ..., DBF_DOUBLEcan be a scalar or an array. ADBF_STRING
field contains aNULL terminated ascii string. The field typesDBF_CHAR, ..., DBF_DOUBLE
correspond to the standard C data types.

DBF_ENUMis used for enumerated items, which is analogous to the C language enumer
An example of an enum field is fieldVAL of a multi bit binary record.

The field typesDBF_ENUM, DBF_MENU, and DBF_DEVICE all have an associated set o
ASCII strings defining the choices. For aDBF_ENUM, the record support module supplie
values and thus are not available for static database access. The database access routin
the choice strings for the other types.

DBF_INLINK andDBF_OUTLINKspecify link fields. A link field can refer to a signal located
in a hardware module, to a field located in a database record in the same IOC, or to a
located in a record in another IOC. ADBF_FWDLINKcan only refer to a record in the sam
IOC. Link fields are described in a later chapter.

DBF_INLINK (input), DBF_OUTLINK(output), andDBF_FWDLINK(forward) specify that
the field is a link structure as defined in link.h . There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized wi
constant value. This is somewhat of a misnomer because constant link fields ca
modified viadbPutField or dbPutLink .

2. Hardware links - The link contains a data structure which describes a signal conn
to a particular hardware bus. Seelink.h for a description of the bus types currentl
supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same IOC.
c. CA_LINK: A reference to a variable located in another IOC.
128 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Include Files

tines

the
each
.

ee

lar
of

ecial

the
DCT always creates aPV_LINK. When the IOC is initialized eachPV_LINK is converted
either to aDB_LINK or aCA_LINK.

DBF_NOACCESS fields are for private use by record processing routines.

dbAccess.h This file is the interface definition for the run time database access library, i.e. for the rou
described in this chapter.

An important structure defined in this header file isDBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; /* address of field*/
void *pfldDes; /* address of struct fldDes*/
void *asPvt; /* Access Security Private*/
long no_elements; /* number of elements (arrays)*/
short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field*/
short special; /* special processing*/
short dbr_field_type; /*optimal database request type*/

}DBADDR;

• precord: Address of record. Note that its type is a pointer to a structure defining
fields common to all record types. The common fields appear at the beginning of
record. A record support module can castprecord to point to the specific record type

• pfield: Address of the field within the record. Note thatpfield provides direct access
to the data value.

• pfldDes: This points to a structure containing all details concerning the field. S
Chapter “Database Structures” for details.

• asPvt: A field used by access security.

• no_elements: A string or numeric field can be either a scalar or an array. For sca
fields no_elements has the value 1. For array fields it is the maximum number
elements that can be stored in the array.

• field_type: Field type.

• field_size: Size of one element of the field.

• special: Some fields require special processing. This specifies the type. Sp
processing is described later in this manual.

• dbr_field_type: This specifies the optimal database request type for this field, i.e.
request type that will require the least CPU overhead.

NOTE: pfield , no_elements , field_type , field_size , special , and
dbr_field_type can all be set by record support (cvt_dbaddr). Thus field_type ,
field_size , andspecial can differ from that specified bypfldDes .

link.h This header file describes the various types of link fields supported by EPICS.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 129

Chapter 12: Runtime Database Access
Runtime Database Access Overview

annel
nly via
se access.

ribe the
ilities

ay to
ition,
hould
ides in
ess to a

ace was
which

w style
 Runtime Database Access Overview

With the exception of record and device support, all access to the database is via the ch
or database access routines. Even record support routines access other records o
database or channel access. Channel Access, in turn, accesses the database via databa

Perhaps the easiest way to describe the database access layer is to list and briefly desc
set of routines that constitute database access. This provides a good look at the fac
provided by the database.

Before describing database access, one caution must be mentioned. The only w
communicate with an IOC database from outside the IOC is via Channel Access. In add
any special purpose software, i.e. any software not described in this document, s
communicate with the database via Channel Access, not database access, even if it res
the same IOC as the database. Since Channel Access provides network independent acc
database, it must ultimately call database access routines. The database access interf
changed in 1991, but Channel Access was never changed. Instead a module was written
translates old style database access calls to new. This interface between the old and ne
database access calls is discussed in the last section of this chapter.

The database access routines are:

• dbNameToAddr: Locate a database variable.

• dbGetField: Get values associated with a database variable.

• dbGetLink : Get value of field referenced by database link (Macro)

• dbGetLinkValue : Get value of field referenced by database link (Subroutine)

• dbGet: Routine called bydbGetLinkValue anddbGetField

• dbPutField: Change the value of a database variable.

• dbPutLink : Change value referenced by database link (Macro)

• dbPutLinkValue : Change value referenced by database link (Subroutine)

• dbPut: Routine called bydbPutxxx functions.

• dbPutNotify : A database put with notification on completion

• dbNotifyCancel: CanceldbPutNotify

• dbNotifyAdd : Add a new record for to notify set.

• dbNotifyCompletion: Announce that put notify is complete.

• dbBufferSize: Determine number of bytes in request buffer.

• dbValueSize: Number of bytes for a value field.

• dbGetRset Get pointer to Record Support Entry Table

• dbIsValueField Is this field the VAL field.

• dbGetFieldIndex Get field index. The first field in a record has index 0.

• dbGetNelementGet number of elements in the field

• dbIsLinkConnected Is the link field connected.

• dbGetPdbAddrFromLink Get address of DBADDR.

• dbGetLinkDBFtype Get field type of link.

• dbPutAttribute Give a value to a record attribute.
130 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Runtime Database Access Overview

est types
s

r
s or

.

ach

ow
float
• dbScanPassive: Process record if it is passive.

• dbScanLink: Process record referenced by link if it is passive.

• dbProcess: Process Record

• dbScanFwdLink: Scan a forward link.

Database Request
Types and Options

Before describing database access structures, it is necessary to describe database requ
and request options. WhendbPutField or dbGetField are called one of the arguments i
a database request type. This argument has one of the following values:

• DBR_STRING: Value is aNULL terminated string

• DBR_CHAR: Value is a signed char

• DBR_UCHAR: Value is an unsigned char

• DBR_SHORT: Value is a short integer

• DBR_USHORT: Value is an unsigned short integer

• DBR_LONG: Value is a long integer

• DBR_ULONG: Value is an unsigned long integer

• DBR_FLOAT : Value is an IEEE floating point value

• DBR_DOUBLE: Value is an IEEE double precision floating point value

• DBR_ENUM: Value is a short which is the enum item

• DBR_PUT_ACKT: Value is an unsigned short for setting theACKT.

• DBR_PUT_ACKS: Value is an unsigned short for global alarm acknowledgment.

The request typesDBR_STRING,..., DBR_DOUBLEcorrespond exactly to valid data types fo
database fields.DBR_ENUMcorresponds to database fields that represent a set of choice
options. In particular it corresponds to the fields typesDBF_ENUM, DBF_DEVICE, and
DBF_MENU. The complete set of database field types are defined indbFldTypes.h .
DBR_PUT_ACKT andDBR_PUT_ACKS are used to perform global alarm acknowledgment

dbGetField also accepts argument options which is a mask containing a bit for e
additional type of information the caller desires. The complete set of options is:

• DBR_STATUS: returns the alarm status and severity

• DBR_UNITS: returns a string specifying the engineering units

• DBR_PRECISION: returns a long integer specifying floating point precision.

• DBR_TIME : returns the time

• DBR_ENUM_STRS: returns an array of strings

• DBR_GR_LONG: returns graphics info as long values

• DBR_GR_DOUBLE: returns graphics info as double values

• DBR_CTRL_LONG : returns control info as long values

• DBR_CTRL_DOUBLE : returns control info as double values

• DBR_AL_LONG : returns alarm info as long values

• DBR_AL_DOUBLE : returns alarm info as double values

Options
Example

The filedbAccess.h contains macros for using options. A brief example should show h
they are used. The following example defines a buffer to accept an array of up to ten
values. In addition it contains fields for optionsDBR_STATUS andDBR_TIME.

struct buffer {
DBRstatus
DBRtime
float value[10];
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 131

Chapter 12: Runtime Database Access
Database Access Routines

e
allest

w.

e user

).

y is

ess to

ms, etc.
er then

lds of
} buffer;

The associateddbGetField call is:

long options,number_elements,status;
 ...
options = DBR_STATUS | DBR_TIME;
number_elements = 10;
status =

dbGetField(paddr,DBR_FLOAT,&buffer,&options,&number_elements);

ConsultdbAccess.h for a complete list of macros.

StructuredbAddr contains a fielddbr_field_type . This field is the database request typ
that most closely matches the database field type. Using this request type will put the sm
load on the IOC.

Channel Access provides routines similar todbGetField , anddbPutField . It provides
remote access todbGetField , dbPutField , and to the database monitors described belo

ACKT and ACKS The request typesDBR_PUT_ACKTand DBR_PUT_ACKSare used for global alarm
acknowledgment. The alarm handler uses these requests. For each of these types th
(normally channel access) passes an unsigned short value. This value represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes

DBR_PUT_ACKS- The highest alarm severity to acknowledge. If the current alarm severit
less then or equal to this value the alarm is acknowledged.

 Database Access Routines

dbNameToAddr Locate a process variable, format:

long dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick acc
database records and fields within records. The basic rules are:

• Call dbNameToAddr once and only once for each field to be accessed.

• Read field values viadbGetField and write values viadbPutField .

The routines described in this subsection are used by channel access, sequence progra
Record processing routines, however, use the routines described in the next section rath
dbGetField anddbPutField .

Given a process variable name, this routine locates the process variable and fills in the fie
structuredbAddr . The format for a process variable name is:

 “<record_name>.<field_name> ”

For example the value field of a record with record namesample_name is:

 “sample_name.VAL ”.

The record name is case sensitive. Field names always consist of all upper case letters.
132 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Access Routines

ure
ld.
llows
rch, it
cated

upport
ther

and
lar.
dbNameToAddr locates a record via a process variable directory (PVD). It fills in a struct
(dbAddr) describing the field.dbAddr contains the address of the record and also the fie
Thus other routines can locate the record and field without a search. Although the PVD a
the record to be located via a hash algorithm and the field within a record via a binary sea
still takes about 80 microseconds (25MHz 68040) to located a process variable. Once lo
thedbAddr structure allows the process variable to be accessed directly.

Get Routines

dbGetField Get values associated with a process variable, format:

long dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, callsdbGet , and unlocks.

dbGetLink
dbGetLinkValue

Get value from the field referenced by a database link, format:

long dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
short dbrType,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

NOTES:
 1) options can be NULL if no options are desired.
 2) nRequest can be NULL for a scalar.

dbGetLink is actually a macro that callsdbGetLinkValue . The macro skips the call for
constant links. User code should never calldbGetLinkValue .

This routine is called by database access itself and by record support and/or device s
routines in order to get values for input links. The value can be obtained directly from o
records or via a channel access client. This routine honors the link options (process
maximize severity). In addition it has code that optimizes the case of no options and sca

dbGet Get values associated with a process variable, format:

long dbGet(
struct dbAddr*paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/

Thus routine retrieves the data referenced bypaddr and converts it to the format specified by
dbrType .
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 133

Chapter 12: Runtime Database Access
Database Access Routines

n

when

set

. For
utine
lid
tch

he

utines

r

n it

t

”options ” is a read/write field. Upon entry todbGet , options specifies the desired
options. WhendbGetField returns,options specifies the options actually honored. If a
option is not honored, the corresponding fields in buffer are filled with zeros.

”nRequest ” is also a read/write field. Upon entry todbGet it specifies the maximum number
of data elements the caller is willing to receive. WhendbGet returns it equals the actual
number of elements returned. It is permissible to request zero elements. This is useful
only option data is desired.

”pfl ” is a field used by the Channel Access monitor routines. All other users must
pfl =NULL.

dbGet calls one of a number of conversion routines in order to convert data from theDBF
types to theDBRtypes. It calls record support routines for special cases such as arrays
example, if the number of field elements is greater then 1 and record support ro
get_array_info exists, then it is called. It returns two values: the current number of va
field elements and an offset. The number of valid elements may not ma
dbAddr .no_elements , which is really the maximum number of elements allowed. T
offset is for use by records which implement circular buffers.

Put Routines

dbPutField Change the value of a process variable, format:

long dbPutField(
structdbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of theDBR_xxx formats, converting it as
necessary, and modifying the database. Similar todbGetField , this routine calls one of a
number of conversion routines to do the actual conversion and relies on record support ro
to handle arrays and other special cases.

It should be noted that routinedbPut does most of the work. The actual algorithm fo
dbPutField is:

1. If theDISP field isTRUEthen, unless it is theDISP field itself which is being modified,
the field is not written.

2. The record is locked.

3. dbPut is called.

4. If thedbPut is successful then:
If this is thePROCfield or if both of the following areTRUE: 1) the field is a process
passive field, 2) the record is passive.

a. If the record is already active ask for the record to be reprocessed whe
completes.

b. Call dbScanPassive after settingputf TRUE to show the process reques
came fromdbPutField .

5. The record is unlocked.

dbPutLink
dbPutLinkValue

Change the value referenced by a database link, format:

long dbPutLink(
134 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Access Routines

upport

f
andle

esult
and

d is an

d,

l be

ror is
lled

x I/O

ingle
structdb_link *pdbLink,/*addr of database link*/
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data to write*/
long nRequest);/*number of elements to write*/

dbPutLink is actually a macro that callsdbPutLinkValue . The macro skips the call for
constant links. User code should never calldbPutLinkValue .

This routine is called by database access itself and by record support and/or device s
routines in order to put values into other database records via output links.

For Channel Access links it callsdbCaPutLink .

For database links it performs the following functions:

1. CallsdbPut .

2. Implements maximize severity.

3. If the field being referenced isPROCor if both of the following are true: 1)
process_passive is TRUE and 2) the record is passive then:

a. If the record is already active because of adbPutField request then ask for the
record to be reprocessed when it completes.

b. otherwise calldbScanPassive .

dbPut Put a value to a database field, format:

long dbPut(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of theDBR_xxx formats, converting it as
necessary, and modifying the database. Similar todbGet , this routine calls one of a number o
conversion routines to do the actual conversion and relies on record support routines to h
arrays and other special cases.

Put Notify Routines dbPutNotify is a request to notify the caller when all records that are processed as a r
of a put complete processing. The complication occurs because of record linking
asynchronous records. A put can cause an entire chain of records to process. If any recor
asynchronous record then record completion means asynchronous completion.

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directe
dbPutNotify just returnsS_db_Blocked without calling the callback routine.

In all other cases, i.e. the cases for the following rules, the callback routine wil
always be called unlessdbNotifyCancel is called.

2. The user supplied callback is called when all processing is complete or when an er
detected. If everything completes synchronously the callback routine will be ca
BEFOREdbPutNotify returns.

3. The user supplied callback routine must not issue any calls that block such as Uni
requests.

4. In general a set of records may need to be processed as a result of a s
dbPutNotify . If database access detects that anotherdbPutNotify request is active
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 135

Chapter 12: Runtime Database Access
Database Access Routines

ould

ater.
on any record in the set, other then the record referenced by thedbPutNotify , then
thedbPutNotify request will restarted

5. If a record in the set is found to be active because of adbPutField request then when
that record completes thedbPutNotify will be restarted.

6. If a record is found to already be active because of the originaldbPutNotify request
then nothing is done. This is what is done now and any attempt to do otherwise c
easily cause existing databases to go into an infinite processing loop.

It is expected that the caller will arrange a timeout in case thedbPutNotify takes too long.
In this case the caller can calldbNotifyCancel

dbPutNotify Perform a database put and notify when record processing is complete.

Format:

long dbPutNotify(PUTNOTIFY *pputnotify);

where PUTNOTIFY is

typedef struct putNotify{
void (*userCallback)(struct putNotify *);
DBADDR *paddr; /*dbAddr set by dbNameToAddr*/
void *pbuffer; /*address of data*/
long nRequest; /*number of elements to be written*/
short dbrType; /*database request type*/
void *usrPvt; /*for private use of user*/
/*The following is status of request.Set by dbPutNotify*/
long status;
/*fields private to database access*/
...

}PUTNOTIFY;

The caller must allocate aPUTNOTIFY structure and set the fields:

userCallback - Routine that is called upon completion
paddr - address of a DBADDR
pbuffer - address of data
nRequest - number of data elements
dbrType - database request type
usrPvt - a void * field that caller can use as needed.

The status value returned bydbPutNotify is either:

• S_db_Pending: Success: Callback may already have been called or will be called l

• S_db_Blocked: The request failed because adbPutNotify is already active in the
record to which the put is directed.

When the user supplied callback is called, the status value stored inPUTNOTIFYis one of the
following:

• 0: Success

• S_xxxx: The request failed due to some other error.

The user callback is always called unlessdbPutNotify returns S_db_Blocked or
dbNotifyCancel is called before the put notify competes.
136 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Access Routines

ed by
dbNotifyCancel Cancel an outstandingdbPutNotify .

Format:

void dbNotifyCancel(PUTNOTIFY *pputnotify);

This cancels an activedbPutNotify .

dbNotifyAdd This routine is called by database access itself. It should never be called by user code.

dbNotifyCompletion This routine is called by database access itself. It should never be called by user code.

Utility Routines

dbBufferSize Determine the buffer size for adbGetField request, format:

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest);/* number of elements*/

This routine returns the number of bytes that will be returned todbGetField if the request
type, options, and number of elements are specified as given todbBufferSize . Thus it can
be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

dbValueSize Determine the size a value field, format:

dbValueSize(short dbrType);/* DBR_xxx*/

This routine returns the number of bytes for each element of typedbrType .

NOTE: This should become a Channel Access routine

dbGetRest Get address of a record support entry table.

Format:

struct rset *dbGetRset(DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenc
theDBADDR.

dbIsValueField Is this field the VAL field of the record?

Format:

int dbIsValueField(struct dbFldDes *pdbFldDes);

This is the routine that makes theget_value record support routine obsolete.

dbGetFieldIndex Get field index.

Format:
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 137

Chapter 12: Runtime Database Access
Database Access Routines

each
fine

ther
int dbGetFieldIndex(DBADDR *paddr);

Record support routines such asspecial andcvt_dbaddr need to know which field the
DBADDRreferences. The include file describing the record contains define statements for
field. dbGetFieldIndex returns the index that can be matched against the de
statements (normally via a switch statement).

dbGetNelements Get number of elements in a field.

Format:

 long dbGetNelements(struct link *plink,long *nelements);

This sets *nelements to the number of elements in the field referenced by plink.

dbIsLinkConnected Is the link connected.

Format:

int dbIsLinkConnected(struct link *plink);

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

dbGetPdbAddrFromL
ink

Get address of DBADDR from link.

Format:

DBADDR *dbGetPdbAddrFromLink(struct link *plink);

This macro returns the address of the DBADDR for a database link and NULL for all o
link types.

dbGetLinkDBFtype Get field type of a link.

Format:

int dbGetLinkDBFtype(struct link *plink);

Attribute Routine

dbPutAttribute Give a value to a record attribute.

long dbPutAttribute(char *recordTypename,
 char *name,char*value);

This sets the record attributename for record typerecordTypename to value. For
example the following would set the version for the ai record.

dbPutAttribute("ai","VERS","V800.6.95")

Process Routines

dbScanPassive
dbScanLink
dbScanFwdLink

Process record if it is passive, format:

long dbScanPassive(
struct dbCommon *pfrom,
138 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Runtime Link Modification

ay

r
it

alls to

pter

the
lity of
tate of
e of a

outine
state
struct dbCommon *pto); /* addr of record*/
long dbScanLink(

struct dbCommon *pfrom,
struct dbCommon *pto);

void dbScanFwdLink(struct link *plink);

dbScanPassive anddbScanLink are given the record requesting the scan, which m
be NULL, and the record to be processed. If the record is passive andpact =FALSE then
dbProcess is called. Note that these routine are called bydbGetLink , dbPutField , and
by recGblFwdLink.

dbScanFwdLink is given a link that must be a forward link field. It follows the rules fo
scanning a forward link. That is for DB_LINKs it calls dbScanPassive and for CA_LINKS
does a dbCaPutLink if the PROC field of record is being addressed.

dbProcess Request that a database record be processed, format:

long dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

 Runtime Link Modification

Database links can be changed at run time but only via a channel access client, i.e. via c
dbPutField but not todbPutLink . The following restrictions apply:

• Only DBR_STRING is allowed.

• If a link is being changed to a different hardware link type then theDTYPfield must be
modified before the link field.

• The syntax for the string field is exactly the same as described for link fields in cha
“Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In
addition modification to record/device support will be needed in order to properly
support dynamic modification of hardware links.

 Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which allow
value of a process variable to be monitored by a channel access client. It is a responsibi
record support (and db common) to notify the channel access server when the internal s
a process variable has been modified. State changes can include changes in the valu
process variable and also changes in the alarm state of a process variable. The r
“db_post_events()” is called to inform the channel access server that a process variable
change event has occurred.

#include <caeventmask.h>

int db_post_events(void *precord, void *pfield,
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 139

Chapter 12: Runtime Database Access
Lock Set Routines

g the
ecord
hould
n of

e

has
itor

t to
ined

has

be
ts()”.
at this

ked
nough.
for the
yed
r is
at may

the
to be
may
unsigned intselect);

The first argument, “precord”, should be passed a pointer to the record which is postin
event(s). The second argument, “pfield”, should be passed a pointer to the field in the r
that contains the process variable that has been modified. The third argument, “select”, s
be passed an event select mask. This mask can be any logical or combinatio
{DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in th
event select mask follows.

• DBE_VALUE This indicates that a significant change in the process variable’s value
occurred. A significant change is often determined by the magnitude of the mon
“dead band” field in the record.

• DBE_LOG This indicates that a change in the process variable’s value significan
archival clients has occurred. A significant change to archival clients is often determ
by the magnitude of the archive “dead band” field in the record.

• DBE_ALARM This indicates that a change in the process variable’s alarm state
occurred.

The function “db_post_events()” returns 0 if it is successful and -1 if it fails. It appears to
common practice within EPICS record support to ignore the status from “db_post_even
At this time “db_post_events()” always returns 0 (success). because so many records
time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be bloc
attempting to post an event because a slow client is not able to process events fast e
Each call to “db_post_events()” causes the current value, alarm status, and time stamp
field to be copied into a ring buffer. The thread calling “db_post_events()” will not be dela
by any network or memory allocation overhead. A lower priority thread in the serve
responsible for transferring the events in the event queue to the channel access clients th
be monitoring the process variable.

Currently, when an event is posted for a DBF_STRING field or a field containing array data
value is NOT saved in the ring buffer and the client will receive whatever value happens
in the field when the lower priority thread transfers the event to the client. This behavior
be improved in the future.

 Lock Set Routines

User code only callsdbScanLock and dbScanUnlock . All other routines are called by
iocCore .

dbScanLock Lock a lock set:

long void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

dbScanUnlock Unlock a lock set:

long void dbScanUnlock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs
140 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links

mine

by

ent

ections
t all

is a
tines
outines.
dbLockGetLockId Get lock set id:

long dbLockGetLockId(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. This is most useful to deter
if two records are in the same lock set.

dbLockInitRecords Determine lock sets for each record in database.

void dbLockInitRecords(dbBase *pdbbase);

Called byiocInit .

dbLockSetMerge Merge records into same lock set.

void dbLockSetMerge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called
dbLockInitRecords and also when links are modified bydbPutField .

dbLockSetSplitSl Recompute lock sets for given lock set

void dbLockSetSplit(struct dbCommon *psource);

This is called whendbPutField modifys links.

dbLockSetGblLock Global lock for modifying links.

void dbLockSetGblLock(void);

Only one task at a time can modify link fields. This routine provides a global lock to prev
conflicts.

dbLockSetGblUnlockUnlock the global lock.

void dbLockSetGblUnlock(void);

dbLockSetRecordLockIf record is not already scan locked lock it.

void dbLockSetRecordLock(struct dbCommon *precord);

 Channel Access Database Links

The routines described here are used to create and manipulate Channel Access conn
from database input or output links. At IOC initialization an attempt is made to conver
process variable links to database links. For any link that fails, it is assumed that the link
Channel Access link, i.e. a link to a process variable defined in another IOC. The rou
described here are used to manage these links. User code never needs to call these r
They are automatically called by iocInit and database access.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 141

Chapter 12: Runtime Database Access
Channel Access Database Links

hat
h link a

onitor is

ation

g
is

record

nts.
At iocInit time a taskdbCaLink is spawned. This task is a channel access client t
issues channel access requests for all channel access links in the database. For eac
channel access search request is issued. When the search succeeds a channel access m
established. The monitor is issued specifyingca_field_type andca_element_count .
A buffer is also allocated to hold monitor return data as well as severity. WhendbCaGetLink
is called data is taken from the buffer, converted if necessary, and placed in the loc
specified by thepbuffer argument.

When the firstdbCaPutLink is called for a link an output buffer is allocated, again usin
ca_field_type andca_element_count . The data specified by the pbuffer argument
converted and stored in the buffer. A request is then made todbCaLink task to issue a
ca_put . Subsequent calls todbCaPutLink reuse the same buffer.

Basic Routines These routines are normally only called by database access, i.e. they are not called by
support modules.

dbCaLinkInit Called byiocInit to initialize thedbCa library

void dbCaLinkInit(void);

dbCaAddLink Add a new channel access link

void dbCaAddLink(struct link *plink);

dbCaRemoveLink Remove channel access link.

void dbCaRemoveLink(struct link *plink);

dbCaGetLink Get link value

long dbCaGetLink(struct link *plink,short dbrType,
void *pbuffer,unsigned short *psevr,long *nRequest);

dbCaPutLink Put link value

long dbCaPutLink(struct link *plink,short dbrType,
void *buffering nRequest);

dbGetNelements Get Number of Elements

long dbCaGetNelements(struct link *plink,long *nelements);

This call, which returns an error if link is not connected, sets the native number of eleme

dbCaGetSevr Get Alarm Severity

long dbCaGetSevr(struct link *plink,short *severity);

This call, which returns an error if link is not connected, sets the alarm severity.

dbCaIsLinkConnectedIs Channel Connected

int dbCaIsLinkConnected(struct link *plink)
142 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links
This routine returns (TRUE, FALSE) if the link (is, is not) connected.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 143

Chapter 12: Runtime Database Access
Channel Access Database Links
144 EPICS IOC Application Developer’s Guide

Chapter 13: Device Support Library
d
driver
flicts
 Overview

Include file devLib.h provides definitions for a library of routines useful for device an
driver modules. These are a new addition to EPICS and are not yet used by all device/
support modules. Until they are, the registration routines will not prevent addressing con
caused by multiple device/drivers trying to use the same VME addresses.

 Registering VME Addresses

Definitions of
Address Types

typedef enum {
atVMEA16,
atVMEA24,
atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName[]
= {
”VME A16”,
”VME A24”,
”VME A32”
};

int EPICStovxWorksAddrType[]
= {
VME_AM_SUP_SHORT_IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

};

Register Address long devRegisterAddress(
const char *pOwnerName,

epicsAddressType addrType,
void *baseAddress,
unsigned size,
void **pLocalAddress);
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 145

Chapter 13: Device Support Library
Interrupt Connect Routines

sses
that are
This routine is called to register a VME address. This routine keeps a list of all VME addre
requested and returns an error message if an attempt is made to register any addresses
already being used. *pLocalAddress is set equal to the address as seen by the caller.

Unregister Address long devUnregisterAddress(
epicsAddressType addrType,
void *baseAddress,
const char *pOwnerName);

This routine releases addresses previously registered by a call todevRegisterAddress .

 Interrupt Connect Routines

Definitions of
Interrupt Types

typedef enum {intCPU, intVME, intVXI} epicsInterruptType;

Connect long devConnectInterrupt(
epicsInterruptType intType,
unsigned vectorNumber,
void (*pFunction)(),
void *parameter);

Disconnect long devDisconnectInterrupt(
epicsInterruptType intType,
unsigned vectorNumber);

Enable Level long devEnableInterruptLevel(
epicsInterruptType intType,
unsigned level);

Disable Level long devDisableInterruptLevel(
epicsInterruptType intType,
unsigned level);

 Macros and Routines for Normalized Analog Values

Normalized GetField long devNormalizedGblGetField(
long rawValue,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);
146 EPICS IOC Application Developer’s Guide

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values
This routine is just likerecGblGetField , except that if the request type isDBR_FLOATor
DBR_DOUBLE, the normalized value ofrawValue is obtained, i.e.rawValue is converted to
a value in the range 0.0<=value<.1.0

Convert Digital
Value to a
Normalized Double
Value

#define devCreateMask(NBITS)((1<<(NBITS))-1)
#define devDigToNml(DIGITAL,NBITS) \

(((double)(DIGITAL))/devCreateMask(NBITS))

Convert Normalized
Double Value to a
Digital Value

#define devNmlToDig(NORMAL,NBITS) \
(((long)(NORMAL)) * devCreateMask(NBITS))
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 147

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values
148 EPICS IOC Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
and 2)

ood
es the

t the
other
ssage
utine

ode
n the

r
error

e low
e not

n the
ity
f the
tasks

. The
ck and
es the
 Overview

This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback,
Task Watchdog.

Often when writing code for an IOC there is no obvious task under which to execute. A g
example is completion code for an asynchronous device support module. EPICS suppli
callback tasks for such code.

If an IOC tasks "crashes" there is normally no one monitoring the vxWorks shell to detec
problem. EPICS provides a task watchdog task which periodically checks the state of
tasks. If it finds that a monitored task has terminated or suspended it issues an error me
and can also call other routines which can take additional actions. For example a subro
record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, IOC c
that issuesprintf calls generates errors messages that are never seen. In additio
vxWorks implementation of fprintf requires much more stack space thenprintf calls.
Another problem with vxWorks is thelogMsg facility. logMsg generates messages at highe
priority then all other tasks except the shell. EPICS solves all of these problems via an
message handling facility. Code can call any of the routineserrMessage , errPrintf , or
epicsPrintf . Any of these result in the error message being generated by a separat
priority task. The calling task has to wait until the message is handled but other tasks ar
delayed. In addition the message can be sent to a system wide error message file.

 General Purpose Callback Tasks

Overview EPICS provides three general purpose IOC callback tasks. The only difference betwee
tasks is scheduling priority: Low, Medium, and High. The low priority task runs at a prior
just higher than Channel Access, the medium at a priority about equal to the median o
periodic scan tasks, and the high at a priority higher than the event scan task.The callback
provide a service for any software component that needs a task under which to run
callback tasks use the task watchdog (described below). They use a rather generous sta
can thus be used for invoking record processing. For example the I/O event scanner us
general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#include <callback.h>
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 149

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks

ction

ingle
2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK mycallback;

It is permissible for this to be part of a larger structure, e.g.

struct {
...
CALLBACK mycallback;
...

} ...

3. Call routines (actually macros) to initialize fields inCALLBACK:

callbackSetCallback(VOIDFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a fun
returningVOID. The second argument is the address of theCALLBACK structure.

callbackSetPriority(int, CALLBACK *);

The first argument is the priority, which can have one of the values:priorityLow ,
priorityMedium , or priorityHigh . These values are defined incallback.h .
The second argument is again the address of theCALLBACK structure.

callbackSetUser(VOID *, CALLBACK *);

This call is used to save a value that can be retrieved via a call to:

callbackGetUser(VOID *,CALLBACK *);

4. Whenever a callback request is desired just call one of the following:

callbackRequest(CALLBACK *);
callbackRequestProcessCallback(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a s
argument, which is the same argument that was passed tocallbackRequest , i.e., the
address of theCALLBACK structure.

Syntax The following calls are provided:

long callbackInit(void);

void callbackSetCallback(void *pcallbackFunction,
CALLBACK *pcallback);

void callbackSetPriority(int priority, CALLBACK *pcallback);
void callbackSetUser(void *user, CALLBACK *pcallback);

void callbackRequest(CALLBACK *);
void callbackRequestProcessCallback(CALLBACK *pCallback,

int Priority, void *pRec);
150 EPICS IOC Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks

us

f

on
void callbackGetUser(void *user, CALLBACK *pcallback);

Notes:

• callbackInit is performed automatically when EPICS initializes and IOC. Th
user code never calls this function.

• callbackSetCallback , callbackSetPriority , callbackSetUser , and
callbackGetUser are actually macros.

• callbackRequest and callbackRequestProcessCallback can both be
called at interrupt level.

• callbackRequestProcessCallback is designed for the completion phase o
asynchronous record processing. It issues the calls:

callbackSetCallback(ProcessCallback, pCallback);
callbackSetPriority(Priority, pCallback);
callbackSetUser(pRec, pCallback);
callbackRequest(pCallback);

ProcessCallback , which is designed for asynchronous device completi
applications, consists of the following code:

static void ProcessCallback(CALLBACK *pCallback)
{

dbCommon *pRec;
struct rset *prset;

callbackGetUser(pRec, pCallback);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process)(pRec);
dbScanUnlock(pRec);

}

Example An example use of the callback tasks.

#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];

}myStruct;

void myCallback(CALLBACK *pcallback)
{

struct myStruct *pmyStruct;
callbackGetUser(pmyStruct,pcallback)
printf(”begid=%s endid=%s\n”,&pmyStruct->begid[0],

&pmStruct->endid[0]);
}
example(char *pbegid, char*pendid)
{

strcpy(&myStruct.begid[0],pbegid);
strcpy(&myStruct.endid[0],pendid);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 151

Chapter 14: EPICS General Purpose Tasks
Task Watchdog

tains

ult to

est to
f any
d. The

ck

he

the
callbackSetCallback(myCallback,&myStruct.callback);
callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:

example(”begin”,”end”)

This simple example shows how to use the callback tasks with your own structure that con
theCALLBACK structure at an arbitrary location.

Callback Queue The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by defa
hold 2000 requests. This value can bechanged by callingcallbackSetQueueSize before
incInit in the startup file. The syntax is:

int callbackSetQueueSize(int size)

 Task Watchdog

EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a requ
be watched. The task watchdog runs periodically and checks each task in its task list. I
task is suspended, an error message is issued and, optionally, a callback task is invoke
task watchdog provides the following features:

1. Include module:

#include <taskwd.h>

2. Insert request:

taskwdInsert (int tid, VOIDFUNCPTR callback,
VOID *userarg);

This is the request to include the task with the specifiedtid in the list of tasks to be
watched. If callback is notNULL then if the task becomes suspended, the callba
routine will be called with a single argumentuserarg .

3. Remove request:

taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when t
original task goes into the suspended state.

4. Insert request to be notified if any task suspends:

taskwdAnyInsert(void *userpvt,VOIDFUNCPTR callback,
VOID *userarg);

The callback routine will be called whenever any of the tasks being monitored by
task watchdog task suspends.userpvt must have a nonNULL unique value
152 EPICS IOC Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
Task Watchdog

ine
taskwdAnyInsert , because the task watchdog system uses this value to determ
who to remove iftaskwdAnyRemove is called.

5. Remove request fortaskwdAnyInsert:

taskwdAnyRemove(void *userpvt);

userpvt is the value that was passed totaskwdAnyInsert .
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 153

Chapter 14: EPICS General Purpose Tasks
Task Watchdog
154 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
es of

are

f the

g as
ell as

lared
a result
ut

s a

abase
e last

uite
ple, a

 form:
 Overview

Database scanning is the mechanism for deciding when to process a record. Five typ
scanning are possible:

• Periodic: A record can be processed periodically. A number of time intervals
supported.

• Event: Event scanning is based on the posting of an event by another component o
software via a call to the routinepost_event .

• I/O Event: The original meaning of this scan type is a request for record processin
a result of a hardware interrupt. The mechanism supports hardware interrupts as w
software generated events.

• Passive: Passive records are processed only via requests todbScanPassive . This
happens when database links (Forward, Input, or Output), which have been dec
”Process Passive” are accessed during record processing. It can also happen as
of dbPutField being called (This normally results from a Channel Access p
request).

• Scan Once: In order to provide for caching puts, The scanning system provide
routinescanOnce which arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains dat
fields involved with scanning. It next discusses the interface to the scanning system. Th
section gives a brief overview of how the scanners are implemented.

 Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is q
permissible to change any of the scan related fields of a record dynamically. For exam
display manager screen could tie a menu control to theSCANfield of a record and allow the
operator to dynamically change the scan mechanism.

SCAN This field, which specifies the scan mechanism, has an associated menu of the following

Passive: Passively scanned.
Event: Event Scanned. The fieldEVNT specifies event number
I/O Event scanned.
10 Second: Periodically scanned - Every 10 seconds
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 155

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System

ple all
anned
t, all

e

.
nning
n

iority,

s are
tion,
value

ged by

be in
...

.1 Second: Periodically scanned - Every .1 seconds

PHAS This field determines processing order for records that are in the same scan set. For exam
records periodically scanned at a 2 second rate are in the same scan set. All Event sc
records with the sameEVNTare in the same scan set, etc. For records in the same scan se
records withPHAS=0 are processed before records withPHAS=1, which are processed before
all records withPHAS=2, etc.

In general it is not a good idea to rely onPHASto enforce processing order. It is better to us
database links.

EVNT - Event
Number

This field only has meaning whenSCANis set toEvent scanning, in which case it specifies
the event number. In order for a record to be event scanned,EVNTmust be in the range 0,...255
It should also be noted that some EPICS software components will not request event sca
for event 0. One example is theeventRecord record support module. Thus the applicatio
developer will normally want to define events in the range 1,...,255.

PRIO - Scheduling
Priority

This field can be used by any software component that needs to specify scheduling pr
e.g. the event and I/O event scan facility uses this field.

 Software Components That Interact With The Scanning
System

menuScan.ascii This file contains definitions for a menu related to fieldSCAN. The definitions are of the form:

menu(menuScan) {
choice(menuScanPassive,”Passive”)
choice(menuScanEvent,”Event”)
choice(menuScanI_O_Intr,”I/O Intr”)
choice(menuScan10_second,”10 second”)
choice(menuScan5_second,”5 second”)
choice(menuScan2_second,”2 second”)
choice(menuScan1_second,”1 second”)
choice(menuScan_5_second,”.5 second”)
choice(menuScan_2_second,”.2 second”)
choice(menuScan_1_second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definition
for the periodic scan rates, which must appear in order of decreasing rate. At IOC initializa
the menu values are read by scan initialization. The number of periodic scan rates and the
of each rate is determined from the menu values. Thus periodic scan rates can be chan
changing menuScan.ascii and loading this version viadbLoadAscii . The only
requirement is that each periodic definition must begin with the value and the value must
units of seconds.

dbScan.h All software components that interact with the scanning system must include this file.

The most important definitions in this file are:
156 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
Software Components That Interact With The Scanning Sys-

ions
e
in the

to be

rams

port.
/* Note that these must match the first four definitions*/
/* in choiceGbl.ascii*/
#define SCAN_PASSIVE 0
#define SCAN_EVENT 1
#define SCAN_IO_EVENT 2
#define SCAN_1ST_PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanInit(void);
void post_event(int event);
void scanAdd(struct dbCommon *);
void scanDelete(struct dbCommon *);
void scanOnce(void *precord);
int scanOnceSetQueueSize(int size);
int scanppl(void); /*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*print io_event list*/
void scanIoInit(IOSCANPVT *);
void scanIoRequest(IOSCANPVT);

The first set of definitions defines the various scan types. The next two definit
(IOSCANPVTand interruptAccept) are for interfacing with the I/O event scanner. Th
remaining definitions define the public scan access routines. These are described
following subsections.

Initializing Database
Scanners

scanInit(void);

The routinescanInit is called byiocInit . It initializes the scanning system.

Adding And
Deleting Records
From Scan List

The following routines are called each time a record is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDelete(struct dbCommon *);

These routines are called byscanInit at IOC initialization time in order to enter all records
created via DCT into the correct scan list. The routinedbPut calls scanDelete and
scanAdd each time a scan related field is changed (each scan related field is declared
SPC_SCANin dbCommon.ascii). scanDelete is called before the field is modified and
scanAdd after the field is modified.

Declaring Database
Event

Whenever any software component wants to declare a database event, it just calls:

post_event(event)

This can be called by virtually any IOC software component. For example sequence prog
can call it. The record support module foreventRecord calls it.

Interfacing to
I/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver sup

1. Include<dbScan.h>

2. For each separate event source the following must be done:
a. Declare anIOSCANPVT variable, e.g.

static IOSCANPVT ioscanpvt;
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 157

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System

o,

e of

ts I/O
b. CallscanIoInit , e.g.
scanIoInit(&ioscanpvt);

3. Provide the device supportget_ioint_info routine. This routine has the format:
long get_ioint_info(

int cmd,
struct dbCommon *precord,

IOSCANPVT *ppvt);
This routine is called each time the record pointed to byprecord is added or deleted
from an I/O event scan list.cmd has the value (0,1) if the record is being (added t
deleted from) an I/O event list. This routine must give a value to *ppvt .

4. Whenever an I/O event is detected callscanIoRequest , e.g.
scanIoRequest(ioscanpvt)

This routine can be called from interrupt level. The request is actually directed to on
the standard callback tasks. The actual one is determined by thePRIO field of
dbCommon.

The following code fragment shows an event record device support module that suppor
event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXXX */
long init();
long get_ioint_info();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_event;

}devEventTestIoEvent={
5,
NULL,
init,
NULL,
get_ioint_info,
NULL};

static IOSCANPVT ioscanpvt;
static void int_service(IOSCANPVT ioscanpvt)
{
 scanIoRequest(ioscanpvt);
}

static long init()
158 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
Implementation Overview

tem

t
(for
t).

sociated

ed very
rse,

scan
{
 scanIoInit(&ioscanpvt);
 intConnect(<vector>,(FUNCPTR)int_service,ioscanpvt);
 return(0);
}
static long get_ioint_info(

int cmd,
struct eventRecord *pr,
IOSCANPVT *ppvt)

{
 *ppvt = ioscanpvt;
 return(0);
}

 Implementation Overview

The code for the entire scanning system resides indbScan.c , i.e. periodic, event, and I/O
event. This section gives an overview of how the code indbScan.c is organized. The listing
of dbScan.c must be studied for a complete understanding of how the scanning sys
works.

Definitions And
Routines Common
To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK lock;
ELLLIST list;
short modified;
long ticks; /*used only for periodic scan sets*/

};

struct scan_element{
ELLNODE node;
struct scan_list *pscan_list;
struct dbCommon *precord;

}

Later we will see how scan_lists are determined. For now just realize tha
scan_list.list is the head of a list of records that belong to the same scan set
example, all records that are periodically scanned at a 1 second rate are in the same scan se
The node field inscan_element contain the list links. The normal vxWorkslstLib
routines are used to access the list. Each record that appears in some scan list has an as
scan_element . The SPVT field which appears indbCommonholds the address of the
associatedscan_element .

The lock , modified , andpscan_list fields allowscan_elements , i.e. records, to be
dynamically removed and added to scan lists. IfscanList , the routine which actually
processes a scan list, is studied it can be seen that these fields allow the list to be scann
efficiently if no modifications are made to the list while it is being scanned. This is, of cou
the normal case.

The dbScan.c module contains several private routines. The following access a single
set:
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 159

Chapter 15: Database Scanning
Implementation Overview

n set

eing

riority
n

ed in

ks at
• printList : Prints the names of all records in a scan set.

• scanList: This routine is the heart of the scanning system. For each record in a sca
it does the following:

dbScanLock(precord);
dbProcess(precord);
dbScanUnlock(precord);

It also has code to recognize when a scan list is modified while the scan set is b
processed.

• addToList: This routine adds a new element to a scan list.

• deleteFromList: This routine deletes an element from a scan list.

Event Scanning Event scanning is built around the following definitions:

#define MAX_EVENTS 256
typedef struct event_scan_list {

 CALLBACK callback;
 scan_list scan_list;

}event_scan_list;
static event_scan_list

*pevent_list[NUM_CALLBACK_PRIORITIES][MAX_EVENTS];

pevent_list is a 2d array of pointers toscan_lists . Note that the array allows for 256
events, i.e. one for each possible event number. In other words, each event number and p
has its own scan list. Noscan_list is actually created until the first request to add a
element for that event number. The event scan lists have the memory layout illustrat
Figure 15-1.

post_event post_event(int event)

This routine is called to request event scanning. It can be called from interrupt level. It loo
eachevent_scan_list referenced bypevent_list [*][event] (one for each callback
priority) and if any elements are present in thescan_list a callbackRequest is issued.
The appropriate callback task calls routineeventCallback , which just callsscanList .

I/O Event Scanning I/O event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK callback;

Figure 15-1: Scan List Memory Layout

pevent_list[][]

...

event_scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

scan_element
 node
 . . .
 precord

. . .
160 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
Implementation Overview

rpose
llback

rce.

tures

e

l. It

.

EPICS Release: R3.13.0beta12

struct scan_list scan_list;
struct io_scan_list *next;

}
static struct io_scan_list

 *iosl_head[NUM_CALLBACK_PRIORITIES]
= {NULL,NULL,NULL};

The array iosl_head and the fieldnext are only kept so thatscanpiol can be
implemented and will not be discussed further. I/O event scanning uses the general pu
callback tasks to perform record processing, i.e. no task is spawned for I/O event. The ca
field of io_scan_list is used to communicate with the callback tasks.

The following routines implement I/O event scanning:

scanIoInit scanIoInit (IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt sou
scanIoInit allocates and initializes an array ofio_scan_list structures; one for each
callback priority and puts the address inpioscanpvt . Remember that three callback
priorities are supported (low, medium, and high). Thus for each interrupt source the struc
are illustrated in Figure 15-2:

When scanAdd or scanDelete are called, they call the device support routin
get_ioint_info which returnspioscanpvt . The scan_element is added or deleted
from the correct scan list.

scanIoRequest scanIoRequest (IOSCANPVT pioscanpvt)

This routine is called to request I/O event scanning. It can be called from interrupt leve
looks at eachio_scan_list referenced bypioscanpvt (one for each callback priority)
and if any elements are present in thescan_list a callbackRequest is issued. The
appropriate callback task calls routineioeventCallback , which just callsscanList .

Periodic Scanning Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodicTaskId;

nPeriodic , which is determined atiocInit time, is the number of periodic rates
papPeriodic is a pointer to an array of pointers toscan_lists . There is an array element
for each scan rate. Thus the structure illustrated in Figure 15-3 exists afteriocInit .

Figure 15-2: Interrupt Source Structure

pioscanpvt

...
io_scan_list
 .callback
 scan_list
 . . .

scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
EPICS IOC Application Developer’s Guide 161

Chapter 15: Database Scanning
Implementation Overview

iodic

ers

ies. It
A periodic scan task is created for each scan rate. The following routines implement per
scanning:

initPeriodic initPeriodic()

This routine first determines the scan rates. It does this by accessing theSCANfield of the first
record it finds. It issues a call todbGetField with a DBR_ENUMrequest. This returns the
menu choices forSCAN. From this the periodic rates are determined. The array of point
referenced bypapPeriodic is allocated. For each scan rate ascan_list is allocated and a
periodicTask is spawned.

periodicTask periodicTask (struct scan_list *psl)

This task just performs an infinite loop of callingscanList and then callingtaskDelay to
wait until the beginning of the next time interval.

Scan Once

scanOnce void scanOnce (void *precord)

A taskonceTask waits for requests to issue adbProcess request. The routinescanOnce
puts the address of the record to be processed in a ring buffer and wakes uponceTask .

This routine can be called from interrupt level.

SetQueueSize scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entr
can be changed by executing the following command in the vxWorks startup file.

int scanOnceSetQueueSize(int size);

Figure 15-3: Structure after iocInit

papPeriodic

...
scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
scan_element
 node
 . . .
 precord
162 EPICS IOC Application Developer’s Guide

Chapter 16: Database Structures
est to
This

list of

tion

ity

ess
 Overview

This chapter describes the internal structures describing an IOC database. It is of inter
EPICS system developers but serious application developers may also find it useful.
chapter is intended to make it easier to understand the IOC source listings. It also gives a
the header files used by IOC Code.

 Include Files

This section lists the files in base/include that are of most interest to IOC Applica
Developers:

alarm.h alarmString.h - These files contain definitions for all alarm status and sever
values.

cadef.h caerr.h caeventmask.h- These files are of interest to anyone writing channel acc
clients.

callback.h - The definitions for the General Purpose callback system.

dbAccess.h- Definitions for the runtime database access routines.

dbBase.h- Definitions for the structures used to store an EPICS database.

dbDefs.h - A catchall file for definitions that have no other reasonable place to appear.

dbFldTypes.h - Definitions forDBF_xxx andDBR_xxx types.

dbScan.h- Definitions for the scanning system.

dbStaticLib.h - The static databases access system.

db_access.h db_addr.h- Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWorkslstLib . All routines
start withell instead oflst . TheellLib routines work on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 163

Chapter 16: Database Structures
Include Files
fast_lock.h - The FASTLOCK routines.

freeList.h - A general purpose free list facility

gpHash.h- A general purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used byinitHooks .c routines.

link.h - Link definitions

module_types.h - VME hardware configuration.SHOULD NOT BE USED BY NEW
SUPPORT.

recSup.h - The record global routines.

special.h - Definitions for special fields, i.e.SPC_xxx.

task_params.h- Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look atbase /src /libCom /tsSubr .c
164 EPICS IOC Application Developer’s Guide

Chapter 16: Database Structures
Structures
 Structures

dbBase
 menuList
 recordTypeList
 drvList
 bptList
 pathPvt
 ppvd
 pgpHash
 ignoreMissingMenus

dbMenu
 node
 name
 nChoice
 papChoiceName
 papChoiceValue

dbRecordType
 node
 attributeList
 recList
 devList
 name
 no_fields
 no_prompt
 link_ind
 papsortFldName
 sortFldInd
 pvalFldDes
 indvalFlddes
 papFldDes
 ...

drvSup
 node
 name
 pdrvet

brkTable
 node
 name
 number
 papBrkInt

brkInt
 raw
 slope
 eng

dbFldDes
 prompt
 name
 extra
 pdbRecordType
 indRecordType
 special
 field_type
 process_passive
 base
 promptgroup
 interest
 as_level
 initial
 ...

devSup
 node
 name
 pdset
 link_type

dbRecordNode
 node
 precord
 recordname
 visible
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 165

Chapter 16: Database Structures
Structures
166 EPICS IOC Application Developer’s Guide

INDEX

A

AB_IO. 36
Access Security. 53
addpath . 26
alarm - example. 95
Alloc/Free DBENTRY 115
asAddClient. 62
asAddMember. 61
asChangeClient . 63
asChangeGroup. 62
ascheck . 56
asCheckGet(. 63
asCheckPut . 63
asCompute. 64
asComputeAllAsg. 63
asComputeAsg . 64
asdbdump . 66, 76
asDbGetAsl . 66
asDbGetMemberPvt . 66
asDump(. 64
asDumpHag. 64
asDumpHash. 65
asDumpMem. 64
asDumpRules . 64
asDumpUag. 64
ASG. 55

. 54
asGetClientPvt . 63
asGetMemberPvt. 62
asInit . 56, 65, 76
asInitAsyn . 66
asInitFile . 61
asInitFP . 61
asInitialize. 61
ASL. 54
asl - field definition rules. 29
asl_level - field definition 30
asphag . 67, 76
aspmem . 67, 76
asprules . 67, 76
aspuag . 67, 76
asPutClientPvt. 63
asPutMemberPvt . 62
asPvt in DBADDR . 129
asRegisterClientCallback 63
asRemoveClient . 63

asRemoveMember . 62
asSetFilename . 56, 65, 76
asSetSubstitutions . 56, 65
asSubInit . 57, 66
asSubProcess. 57, 66
astac. 66
asynchronous device support example 105

B

base - field definition. 31
base - field definition rules 29
BBGPIB_IO . 36
BITBUS_IO . 36
breakpoint table - database definition 34
Breakpoint Tables . 38
Breakpoints . 73
breaktable . 26

C

ca_channel_status . 77
Cached Puts. 21
CALC . 56
CALLBACK . 150
callbackGetUser 150–151
callbackInit . 150
callbackRequest . 150
callbackRequestProcessCallback 150
callbackSetCallback . 150
callbackSetPriority . 150
callbackSetQueueSize. 49, 152
callbackSetUser. 150
CAMAC_IO . 36
casr . 77
Channel Access. 5
channel access link . 13
Channel Access Monitors 139
choice . 26
choice_string - device definition. 34
comment - Database Definitions. 28
CONSTANT . 35
constant link . 13
coreRelease . 78
cvt_dbaddr - Record Support Routine 98

D

database access routines - List of 130
Database Definition File 25
database definitions. 25
Database Format - Summary 25
database link . 13
Database Link Guidelines. 16
Database Links . 13
Database Locking . 15
Database Scanning . 15
DB_MAX_CHOICES. 127
167 EPICS IOC Application Developer’s Guide

db_post_events . 139
dba. 72
dbAccess.h . 127
dbAdd . 129
dbAddPath. 116
DBADDR . 129
dbAllocBase . 114
dbAllocEntry. 115
dbAllocForm. 122
dbap. 74
dbAsciiToMenuH . 40
dbAsciiToRecordtypeH. 40
dbb. 73
dbBufferSize . 137
dbc. 73
dbCaAddLink . 142
dbCaGetLink. 142
dbCaGetSevr . 142
dbCaLinkInit . 48, 142
dbCaPutLink . 142
dbcar . 77, 79
dbCaRemoveLink . 142
dbCopyEntry . 116
dbCopyEntryContents. 116
dbCopyRecord . 119
dbCreateRecord. 119
dbCvtLinkToConstant. 122
dbCvtLinkToPvlink. 122
dbd. 73
dbDefs.h . 127
dbDeleteRecord. 119
dbDumpBreaktable . 124
dbDumpDevice . 81, 123
dbDumpDriver . 81, 124
dbDumpFldDes. 81, 123
dbDumpMenu 80–81, 123
dbDumpPath . 123
dbDumpRecord. 123
dbDumpRecords . 81, 125
dbDumpRecordType 81, 123
DBE_ALARM . 97
DBE_LOG . 97
DBE_VAL. 97
dbel . 77
dbExpand . 42, 124
DBF_CHAR . 128
DBF_DEVICE . 128
DBF_DOUBLE. 128
DBF_ENUM. 128
DBF_FLOAT . 128
DBF_FWDLINK 37, 128
DBF_INLINK

. 128
DBF_LONG . 128
DBF_MENU. 128
DBF_NOACCESS . 128
DBF_OUTLINK. 128
DBF_SHORT . 128
DBF_UCHAR. 128
DBF_ULONG. 128
DBF_USHORT. 128
DBF_xxx Definitions of Field types. 128
dbFindBrkTable . 123
dbFindField . 120

dbFindMenu . 121
dbFindRecord . 119
dbFindRecordType . 117
dbFinishEntry . 115
dbFirstField . 118
dbFirstRecord . 119
dbFirstRecordType . 117
dbFldTypes.h. 127–128
dbFoundField . 118, 120
dbFreeBase . 115
dbFreeEntry. 115
dbFreeForm. 122
dbGet. 133
dbGetDefaultName . 118
dbGetField. 133
dbGetFieldIndex . 138
dbGetFieldName. 118
dbGetFieldType. 118
dbGetFormPrompt . 122
dbGetFormValue . 122
dbGetLink . 133
dbGetLinkDBFtype. 138
dbGetLinkField . 122
dbGetLinkType . 122
dbGetMenuChoices. 120
dbGetMenuIndex . 121
dbGetMenuIndexFromString 121
dbGetMenuStringFromIndex 121
dbGetNelements . 138
dbGetNFields . 118
dbGetNLinks. 122
dbGetNMenuChoices 120
dbGetNRecords. 119
dbGetNRecordTypes. 117
dbGetPdbAddrFromLink 138
dbGetPrompt . 118
dbGetPromptGroup. 118
dbGetRange. 120
dbGetRecordAttribute. 119
dbGetRecordName . 119
dbGetRecordTypeName 117
dbGetRset . 137
dbGetString. 120
dbgf . 72
dbgrep . 71
dbhcr . 75, 80
dbInitEntry . 115
dbInvisibleRecord . 120
dbior . 74
dbIsDefaultValue. 120
dbIsLinkConnected. 138
dbIsValueField . 137
dbIsVisibleRecord. 120
dbl . 71
dbLoadDatabase . 43
dbLoadRecords . 44
dbLoadTemplate . 44
dbLockGetLockId . 141
dbLockInitRecords . 141
dbLockSetGblLock. 141
dbLockSetGblUnlock 141
dbLockSetMerge. 141
dbLockSetRecordLock 141
dbLockSetSplitSl . 141
168 EPICS IOC Application Developer’s Guide

dblsr. 79
dbNameToAddr. 132
dbNextField. 118
dbNextRecord . 119
dbNextRecordType . 117
dbNotifyAdd . 137
dbNotifyCancel . 137
dbNotifyCompletion . 137
dbnr . 73
dbp. 73
dbPath . 116
dbpf . 72
dbpr . 72
dbProcess . 139
dbPut . 135
dbPutAttribute. 38, 138
dbPutField . 134
dbPutForm. 122
dbPutLink . 134
dbPutMenuIndex. 121
dbPutNotify. 135–136
dbPutRecordAttribute 118
dbPutString . 120
dbPvdDump . 82, 124
dbPvdTableSize. 49
DBR_AL_DOUBLE. 131
DBR_AL_LONG . 131
DBR_CHAR . 131
DBR_CTRL_DOUBLE 131
DBR_CTRL_LONG. 131
DBR_DOUBLE . 131
DBR_ENUM. 131
DBR_ENUM_STRS. 131
dbr_field_type in DBADDR 129
DBR_FLOAT . 131
DBR_GR_DOUBLE. 131
DBR_GR_LONG . 131
DBR_LONG . 131
DBR_PRECISION . 131
DBR_PUT_ACKS 131–132
DBR_PUT_ACKT 131–132
DBR_SHORT . 131
DBR_STATUS . 131
DBR_TIME. 131
DBR_UCHAR . 131
DBR_ULONG . 131
DBR_UNITS. 131
DBR_USHORT. 131
DBR_xxx Database Request Types and Options131
dbReadDatabase . 116
dbReadDatabaseFP . 116
dbReadTest . 45
dbRenameRecord . 120
dbReportDeviceConfig 124
dbs. 73
dbScan.h . 156
dbScanFwdLink . 139
dbScanLink . 139
dbScanLock. 140
dbScanPassive. 138
dbScanUnlock. 140
dbstat . 74
dbt . 78
dbtgf . 78

dbToMenuH . 39
dbToRecordtypeH . 39
dbtpf . 79
dbtpn . 79
dbtr . 72
dbTranslateEscape . 27
dbValueSize. 137
dbVerify. 120
dbVerifyForm . 122
dbVisibleRecord . 120
dbWriteBreaktable . 116
dbWriteBreaktableFP 116
dbWriteDevice . 116
dbWriteDeviceFP . 116
dbWriteDriver . 116
dbWriteDriverFP. 116
dbWriteMenu . 116
dbWriteMenuFP . 116
dbWriteRecord . 117
dbWriteRecordFP . 117
dbWriteRecordType . 116
dbWriteRecordTypeFP 116
DCT_FWDLINK . 114
DCT_INLINK. 114
DCT_INTEGER . 114
DCT_LINK_CONSTANT 121
DCT_LINK_DEVICE 121
DCT_LINK_FORM . 121
DCT_LINK_PV . 121
DCT_MENU. 114
DCT_MENUFORM . 114
DCT_NOACCESS . 114
DCT_OUTLINK. 114
DCT_REAL . 114
DCT_STRING . 114
devConnectInterrupt . 146
devCreateMask . 147
devDisableInterruptLevel 146
devDisconnectInterrupt. 146
devEnableInterruptLevel. 146
device . 26
device - database definition. 33
Device Support Entry Table 91
devNmlToDig . 147
devNormalizedGblGetField 146
devRegisterAddress . 145
devUnregisterAddress. 146
driver . 26
driver - database definition 34
Driver Support Entry Table Example 110
drvet_name - driver definition. 34
DSET. 91
dset - dbCommon . 103
dset_name - device definition 34
dtyp - dbCommon . 103

E

eltc. 74, 86
Environment Variables 51
EPICS . 1, 5

Basic Attributes. 6
169 EPICS IOC Application Developer’s Guide

Hardware/Software Platforms. 6
Overview. 1

EPICS_CA_ADDR_LIST 51
EPICS_CA_AUTO_ADDR_LIST 51
EPICS_CA_BEACON_PERIOD 51
EPICS_CA_CONN_TMO 51
EPICS_CA_REPEATER_PORT 51
EPICS_CA_SERVER_PORT. 51
EPICS_IOC_LOG_FILE_COMMAND. 87
EPICS_IOC_LOG_FILE_LIMIT. 87
EPICS_IOC_LOG_FILE_NAME 87
EPICS_IOC_LOG_INET 51
EPICS_IOC_LOG_PORT. 51, 88
EPICS_TS_MIN_WEST 51
EPICS_TS_NTP_INET 51
epicsAddressType . 145
epicsAddressTypeName 145
epicsInterruptType . 146
epicsPrintf . 85, 101
epicsPrtEnvParams . 78
epicsRelease . 78
EPICStovxWorksAddrType 145
epicsVprintf. 85
errlog Task . 85
errlogAddListener . 86
errlogFatal . 84
errlogGetSevEnumString 84
errlogGetSevToLog. 84
errlogInfo . 84
errlogInit . 49, 86
errlogListener . 86
errlogMajor . 84
errlogMessage. 84
errlogMinor . 84
errlogPrintf . 84
errlogRemoveListener. 86
errlogSetSevToLog . 84
errlogSevEnum . 84
errlogSevPrintf . 84
errlogSevVprintf . 84
errlogVprintf . 84
errMessage . 84
errPrintf . 84–85
Escape Sequence. 27
Event . 155
Event - Scan Type . 155
Event Scanning . 160
EVNT - Scan Related Field 156
extra - field definition rules 29
extra_info - field definition 31

F

field . 26
field_name - field definition 29
field_name - record instance definition. 35
field_size in DBADDR 129
field_type in DBADDR. 129
filed_type - field definition 30
filename extension conventions 27
FLDNAME_SZ. 127
FWDLINK . 13

G

get_alarm_double Record Support Routine . . 100
get_array_info - Record Support Routine. 98
get_control_double - Record Support Routine 100
get_enum_str - record Support Routine 99
get_enum_strs - record Support Routine 99
get_graphic_double - example 94
get_graphic_double - Record Support Routine. 99
get_ioint_info . 159
get_ioint_info - device support routine. 108
get_precision - Record Support Routine. 99
get_units - .example . 94
get_units - Record Support Routine 98
gft . 80
GPIB_IO . 36
grecord . 26
gui_group - field definition 30
Guidelines for Asynchronous Records 20
Guidelines for Synchronous Records 19

H

HAG . 54–56

I

I/O Event - Scan Type. 155
I/O Event scanned . 155
I/O Event Scanning 157, 160
include. 26
include - Database Definitions 28
Include File Generation. 39
init - device support routine 107
init - Record Support Routine. 97
init_record - device support routine 108
init_record - example . 92
init_record - Record Support Routine. 97
init_value - field definition 30
InitDatabase . 48
InitDevSup . 48
InitDrvSup. 48
initHookFunction . 50
initHookRegister . 50
initHooks. 50
initHookState . 50
initial - field definition rules 29
Initialize Logging . 51
initPeriodic . 162
InitRecSup. 48
INLINK. 13
INP . 55
Input/Output Controller 1

Hardware/Software Platforms. 6
Software Components. 7

INST_IO . 36
interest - field definition rules 29
interest_level - field definition 31
interruptAccept . 48
170 EPICS IOC Application Developer’s Guide

IOC . 5
See Input/Out Controller

IOC Error Logging . 83
iocInit . 48
iocLogClient . 87
iocLogDisable . 87
iocLogServer. 87

K

Keywords . 26

L

LAN . 5
link.h . 127
LINK_ALARM. 14
link_type - device definition 34
Local Area Network

Hardware/Software Platforms. 6
logMsg . 87

M

Macro Substitution . 27
MAX_STRING_SIZE 127
Maximize Severity . 14
menu . 26
menu - Database Definition 28
menu - field definition rules 29
menuScan.ascii . 156
monitor - example . 96
MS. 14
Multiple Definitions . 27

N

name - breakpoint table. 34
NMS . 14
no_elements in DBADDR 129
NPP . 14

O

Operator Interface
Hardware/Software Platforms. 6

OPI . 5
OUTLINK. 13
Overview of Record Processing 89

P

Passive. 155

Passive - Scan Type. 155
path . 26
path - Database Definitions. 27
Periodic - Scan Type . 155
Periodic Scanning . 161
periodicTask . 162
pfield in DBADDR . 129
pfldDes in DBADDR 129
pft . 80
PHAS - Scan Related Field. 156
post_event . 157, 160
PP . 14
pp - field definition rules. 29
pp_value - field definition 31
precord - DBADDR . 129
PRIO - Scan Related Field 156
process - example . 93
process - Record Support Routine 98
process - record support routine 16
Process Passive . 14
prompt - field definition rules 29
prompt_value - field definition 30
. 29
Psuedo Field . 37
put_array_info - Record Support Routine. 98
put_enum_str - Record Support Routine 99
putenv . 51
PUTNOTIFY . 136
PV_LINK . 35
PVNAME_SZ . 127

Q

Quoted String . 27

R

recGblDbaddrError . 101
recGblFwdLink. 102
recGblGetAlarmDouble 102
recGblGetControlDouble 101
recGblGetGraphicDouble 101
recGblGetPrec. 102
recGblGetTimeStamp 102
recGblInitConstantLink 102
recGblRecordError . 101
recGblRecsupError . 101
recGblResetAlarms. 101
recGblSetSevr . 100
record . 26
record attribute . 37
record instance - database definition. 35
Record Instance File . 25
Record Processing. 16
Record Support Entry Table 90
record type - Database Definition 29
record_name - record instance definition 35
record_type - device definition 34
record_type - record instance definition 35
record_type - record type definition 29
171 EPICS IOC Application Developer’s Guide

recordtype . 26
report - device support routine 107
report - Record Support Routine. 97
Resource Definitions. 52
RF_IO . 37
RSET. 90
RSET - example . 91
RULE . 55
rules

field definition . 29

S

S_db_Blocked. 136
S_db_Pending . 136
SCAN - Scan Related Field 155
Scan Once - Scan Type 155
Scan Related Database Fields 155
SCAN_1ST_PERIODIC. 157
scanAdd. 157
scanDelete . 157
scanInit . 157
scanIoInit. 161
scanIoRequest . 161
scanOnce. 162
scanOnceSetQueueSize. 49, 162
scanpel. 75
scanpiol . 75
scanppl . 75
size - field definition rules. 29
size_value - field definition. 31
SPC_ALARMACK. 31
SPC_AS . 31
SPC_CALC. 31
SPC_DBADDR. 31
SPC_LINCONV . 31
SPC_MOD . 31
SPC_NOMOD . 31
SPC_RESET . 31
SPC_SCAN. 31
special - field definition rules 29
special - Record Support Routine 98
special in DBADDR . 129
special_value - field definition 31
status codes . 86
struct dbAddr . 129
struct putNotify . 136
synchronous device support example 104

T

taskwd.h . 152
taskwdAnyInsert . 152
taskwdAnyRemove . 153
taskwdInsert . 152
taskwdRemove . 152
timexN. 78
tpn . 80
Ts_init . 48
TSConfigure . 49

TSconfigure. 49
TSreport . 75

U

UAG . 54–55
Unquoted String . 27

V

value - record instance definition 35
veclist . 78
VME_AM_EXT_SUP_DATA 145
VME_AM_STD_SUP_DATA 145
VME_AM_SUP_SHORT_IO. 145
VME_IO . 36
VXI_IO . 37
vxWorks startup command file 47
172 EPICS IOC Application Developer’s Guide

	EPICS Input / Output Controller (IOC) Application Developer’s Guide
	Martin R. Kraimer
	Table of Contents
	Preface
	Overview
	Acknowledgments

	Chapter 1: EPICS Overview
	What is EPICS?
	Basic Attributes
	Hardware - Software Platforms (Vendor Supplied)
	OPI
	LAN
	IOC
	IOC Software Components

	IOC Database
	Database Access
	Database Scanning
	Record Support, Device Support and Device Drivers
	Channel Access
	Database Monitors
	Channel Access

	Client Services
	Search Server
	Connection Request Server
	Connection Management
	OPI Tools

	Channel Access Tools
	Other OPI Tools
	EPICS Core Software
	Getting Started

	Chapter 2: Database Locking, Scanning, And Processing
	Overview
	Record Links
	Database Links
	Process Passive
	Maximize Severity
	Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	Database Scanning
	5. Periodic - Records are scanned at regular intervals.
	6. I/O event - A record is scanned as the result of an I/O interrupt.
	7. Event - A record is scanned as the result of any task issuing a post_event request.
	8. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	Record Processing
	Guidelines for Creating Database Links
	9. A begins processing. While processing a request is made to process B.
	10. B starts processing. While processing a request is made to process C.
	11. C starts processing. One of the first steps is to get a value from A via the input link.
	12. At this point a question occurs. Note that the input link specifies process passive (signifie...
	13. C obtains the value from A and completes its processing. Control returns to B.
	14. B completes returning control to A
	15. A completes processing.

	Rules Relating to Database Links
	Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	Lock Sets
	PACT - processing active
	Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	Process Passive: Field attribute
	Maximize Severity: Link option
	Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	Guidelines for Asynchronous Records
	9. pact is set TRUE
	10. Data is obtained for all input links
	11. Record processing is started
	12. The record processing routine returns
	1. Record processing continues
	1. Record specific alarm conditions are checked
	2. Monitors are raised
	3. Forward links are processed
	4. pact is set FALSE.
	1. Asynchronous record processing does not delay the scanners.
	1. Between the time record processing begins and the asynchronous completion routine completes, n...
	2. Forward and output links are triggered only when the asynchronous completion routine completes...

	Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	Obtain Old Data
	Delays
	Task Abort
	Cached Puts
	Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.

	INLINK
	OUTLINK
	FWDLINK

	Chapter 3: Database Definition
	Overview
	Definitions
	Summary
	General Rules
	Keywords
	Unquoted Strings
	Quoted Strings
	Macro Substitution
	Escape Sequences
	dbTranslateEscape
	Define before referencing
	Multiple Definitions
	filename extension
	path addpath
	include
	comment
	menu
	Record Type
	rules
	definitions
	Example
	device
	definitions
	Examples
	driver
	Definitions
	Examples
	breakpoint table
	Definitions
	Example
	record instance
	definitions
	Examples
	record attribute
	Breakpoint Tables
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	Menu and Record Type Include File Generation.

	Introduction
	dbToMenuH
	Example
	dbToRecordtypeH
	Example
	Discussion of Generated File
	Utility Programs

	dbExpand
	dbLoadDatabase
	EXAMPLE
	dbLoadRecords
	dbLoadTemplate
	EXAMPLE
	dbReadTest

	Chapter 4: IOC Initialization
	Overview
	iocInit
	coreRelease
	getResources
	iocLogInit
	taskwdInit
	callbackInit
	dbCaLinkInit
	initDrvSup
	initRecSup
	initDevSup
	ts_init
	initDatabase
	finishDevSup
	scanInit
	interruptAccept
	initialProcess
	rsrv_init
	Changing iocCore fixed limits

	callbackSet QueueSize
	dbPvdTableSize
	scanOnceSet QueueSize
	errlogInit
	TSconfigure
	initHooks
	Environment Variables
	Initialize Logging
	Get Resource Definitions

	Chapter 5: Access Security
	Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Implementation Overview

	Quick Start
	User’s Guide
	Features
	Limitations
	Definitions
	Access Security Configuration File
	Simple Example
	Syntax Definition
	Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	ascheck - Check Syntax of Access Configuration File
	IOC Access Security Initialization
	Database Configuration
	Access Security Group
	Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	1. When the value is found to be 1, asInit is called and the value set back to 0.
	2. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	Record Type Description
	Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.
	Design Summary

	Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	Additional Requirements
	Performance
	Generic Implementation
	No Access Security within an IOC
	Defaults
	Access Security is Optional
	Design Overview
	Configuration File
	Access Security Library
	IOC Database Access Security
	Channel Access Security
	Comments
	Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.
	Access Security Application Programmer’s Interface

	Definitions
	Initialization
	Group manipulation
	add Member
	remove Member
	get Member Pvt
	put Member Pvt
	change Group
	Client Manipulation
	add Client
	change Client
	remove Client
	get Client Pvt
	put Client Pvt
	register Callback
	check Get
	check Put
	Access Computation
	compute all Asg
	compute Asg
	compute access rights
	Diagnostic
	dump
	dump UAG
	dump HAG
	dump Rules
	dump member
	dump hash table
	Database Access Security

	Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	Access Security Group definition
	Access Client Definition
	Database Access Library
	Initialization
	Routines used by Channel Access Server
	Routine to test asAddClient
	Subroutines attached to a subroutine record
	Diagnostic Routines
	Channel Access Security

	CA Server Interfaces to the Access Security System
	Client Interfaces
	Access Control: Implementation Overview

	Implementation Overview
	Locking
	Structures

	Chapter 6: IOC Test Facilities
	Overview
	Database List, Get, Put
	dbl
	dbgrep
	dba
	dbgf
	dbpf
	dbpr
	dbtr
	dbnr
	Breakpoints

	dbb
	dbd
	dbs
	dbc
	dbp
	dbap
	dbstat
	Error Logging

	eltc
	Hardware Reports

	dbior
	dbhcr
	Scan Reports

	scanppl
	scanpel
	scanpiol
	Time Server Report

	TSreport
	Access Security Commands

	asSetFilename
	asInit
	asdbdump
	aspuag
	asphag
	asprules
	aspmem
	Channel Access Reports

	ca_channel_status
	casr
	dbel
	dbcar
	Interrupt Vectors

	veclist
	EPICS

	epicsPrtEnvParams
	epicsRelease
	Database System Test Routines

	dbt
	dbtgf
	dbtpf
	dbtpn
	Record Link Routines

	dblsr
	dbcar
	dbhcr
	Old Database Access Testing

	gft
	pft
	tpn
	Routines to dump database information

	dbDumpPath
	dbDumpMenu
	dbDumpRecordType
	dbDumpFldDes
	dbDumpDevice
	dbDumpDriver
	dbDumpRecords
	dbDumpBreaktable
	dbPvdDump

	Chapter 7: IOC Error Logging
	Overview
	Error Message Routines
	Basic Routines
	Log with Severity
	Status Routines
	Obsolete Routines
	errlog Task

	Add and Remove Log Listener
	target console routines
	Status Codes
	iocLog

	iocLogServer
	iocLogClient
	Initialize Logging
	Configuring a Private Log Server

	Chapter 8: Record Support
	Overview
	Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	Record Support and Device Support Entry Tables
	Example Record Support Module
	Declarations
	init_record
	process
	Miscellaneous Utility Routines
	Alarm Processing
	Raising Monitors
	Record Support Routines

	Generate Report of Each Field in Record
	Initialize Record Processing
	Initialize Specific Record
	Process Record
	Special Processing
	Get Value
	Convert dbAddr Definitions
	Get Array Information
	Put Array Information
	Get Units
	Get Precision
	Get Enumerated String
	Get Strings for Enumerated Field
	Put Enumerated String
	Get Graphic Double Information
	Get Control Double Information
	Get Alarm Double Information
	Global Record Support Routines

	Alarm Status and Severity
	Alarm Acknowledgment
	Generate Error: Process Variable Name, Caller, Message
	Generate Error: Status String, Record Name, Caller
	Generate Error: Record Name, Caller, Record Support Message
	Get Graphics Double
	Get Control Double
	Get Alarm Double
	Get Precision
	Get Time Stamp
	Forward link
	Initialize Constant Link

	Chapter 9: Device Support
	Overview
	Example Synchronous Device Support Module
	Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	Device Support Routines
	Generate Device Report
	Initialize Record Processing
	Initialize Specific Record
	Get I/O Interrupt Information
	Other Device Support Routines

	Chapter 10: Driver Support
	Overview
	Device Drivers
	init
	report
	Hardware Configuration

	Chapter 11: Static Database Access
	Overview
	Definitions
	DBBASE
	DBENTRY
	Field Types
	Allocating and Freeing DBBASE

	dbAllocBase
	dbFreeBase
	DBENTRY Routines

	Alloc/Free DBENTRY
	dbInitEntry dbFinishEntry
	dbCopyEntry dbCopyEntry Contents
	Read and Write Database

	Read Database File
	Write Database Definitons
	Write Record Instances
	Manipulating Record Types

	Get Number of Record Types
	Locate Record Type
	Get Record Type Name
	Manipulating Field Descriptions

	Get Number of Fields
	Locate Field
	Get Field Type
	Get Field Name
	Get Default Value
	Get Field Prompt
	Manipulating Record Attributes

	dbPutRecord Attribute
	dbGetRecord Attribute
	Manipulating Record Instances

	Get Number of Records
	Locate Record
	Get Record Name
	Create/Delete/Free Record
	Copy Record
	Rename Record
	Record Visibility
	Find Field
	Get/Put Field Values
	Manipulating Menu Fields

	Get Number of Menu Choices
	Get Menu Choice
	Get/Put Menu
	Locate Menu
	Manipulating Link Fields

	Link Types
	All Link Fields
	Constant and Process Variable Links
	Manipulating MenuForm Fields

	Alloc/Free Form
	Get/Put Form
	Verify Form
	Get Related Field
	Example
	Find Breakpoint Table
	Dump Routines
	Examples

	Expand Include
	dbDumpRecords

	Chapter 12: Runtime Database Access
	Overview
	Database Include Files
	dbDefs.h
	dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	dbAccess.h
	link.h
	Runtime Database Access Overview

	Database Request Types and Options
	Options Example
	ACKT and ACKS
	Database Access Routines

	dbNameToAddr
	Get Routines
	dbGetField
	dbGetLink dbGetLinkValue
	dbGet
	Put Routines
	dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.
	5. The record is unlocked.

	dbPutLink dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	dbPut
	Put Notify Routines
	1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just ...
	2. The user supplied callback is called when all processing is complete or when an error is detec...
	3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.
	4. In general a set of records may need to be processed as a result of a single dbPutNotify. If d...
	5. If a record in the set is found to be active because of a dbPutField request then when that re...
	6. If a record is found to already be active because of the original dbPutNotify request then not...

	dbPutNotify
	dbNotifyCancel
	dbNotifyAdd
	dbNotifyCompletion
	Utility Routines
	dbBufferSize
	dbValueSize
	dbGetRest
	dbIsValueField
	dbGetFieldIndex
	dbGetNelements
	dbIsLinkConnected
	dbGetPdbAddrFromL ink
	dbGetLinkDBFtype
	Attribute Routine
	dbPutAttribute
	Process Routines
	dbScanPassive dbScanLink dbScanFwdLink
	dbProcess
	Runtime Link Modification
	Channel Access Monitors
	Lock Set Routines

	dbScanLock
	dbScanUnlock
	dbLockGetLockId
	dbLockInitRecords
	dbLockSetMerge
	dbLockSetSplitSl
	dbLockSetGblLock
	dbLockSetGblUnlock
	dbLockSetRecordLock
	Channel Access Database Links

	Basic Routines
	dbCaLinkInit
	dbCaAddLink
	dbCaRemoveLink
	dbCaGetLink
	dbCaPutLink
	dbGetNelements
	dbCaGetSevr
	dbCaIsLinkConnected

	Chapter 13: Device Support Library
	Overview
	Registering VME Addresses
	Definitions of Address Types
	Register Address
	Unregister Address
	Interrupt Connect Routines

	Definitions of Interrupt Types
	Connect
	Disconnect
	Enable Level
	Disable Level
	Macros and Routines for Normalized Analog Values

	Normalized GetField
	Convert Digital Value to a Normalized Double Value
	Convert Normalized Double Value to a Digital Value

	Chapter 14: EPICS General Purpose Tasks
	Overview
	General Purpose Callback Tasks
	Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	Syntax
	Example
	Callback Queue
	Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 15: Database Scanning
	Overview
	Scan Related Database Fields
	SCAN
	PHAS
	EVNT - Event Number
	PRIO - Scheduling Priority
	Software Components That Interact With The Scanning System

	menuScan.ascii
	dbScan.h
	Initializing Database Scanners
	Adding And Deleting Records From Scan List
	Declaring Database Event
	Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.
	Implementation Overview

	Definitions And Routines Common To All Scan Types
	Event Scanning
	Figure 15-1: Scan List Memory Layout

	post_event
	I/O Event Scanning
	scanIoInit
	Figure 15-2: Interrupt Source Structure

	scanIoRequest
	Periodic Scanning
	Figure 15-3: Structure after iocInit

	initPeriodic
	periodicTask
	Scan Once
	scanOnce
	SetQueueSize

	Chapter 16: Database Structures
	Overview
	Include Files
	Structures
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

